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A B S T R A C T

Area-preserving maps play an important role in diverse fields as they are widely used for modeling complex
systems. In addition, these maps provide rich observations by presenting stable orbits and chaotic behavior
separately or together in the phase space depending on the control parameter. In recent years, several studies
on these maps, drawing inspiration from the phase space dynamics, have shown that nonextensive statistical
mechanics provides appropriate instruments to characterize these systems. In this study, we perform a rigorous
numerical analysis to delve into the statistical mechanical properties of a billiard system. Our primary goal is
to confirm the presence of a 𝑞-Gaussian distribution, with an estimated 𝑞 value of approximately 1.935. We
accomplish this by examining the probability distribution of the cumulative sum of system iterates, focusing
specifically on initial conditions within the stability islands. Our findings align seamlessly with the latest
research in this field. Furthermore, we show that a multi-component probability distribution containing both
Gaussian and 𝑞-Gaussians describes the entire system for some parameter regions where the phase space
consists of stability islands together with the chaotic sea.
1. Introduction

Several studies demonstrating the use of non-extensive statistical
mechanics in dynamical systems have been carried out in recent years,
and connections among diverse systems and disciplines have been en-
lightened [1,2]. The framework of this formalism explains the limiting
behavior of systems that have a correlated nature and are neither
ergodic nor mixing, where the Boltzmann–Gibbs (BG) statistical me-
chanics do not apply. While the BG approach succeeds in describing
the long-term behavior of ergodic and mixing systems with a positive
largest Lyapunov exponent (LLE), i.e., systems in a strongly chaotic
regime, nonextensive statistical mechanics, which includes the BG me-
chanics as a particular case, can describe the long-term behavior of
nonergodic systems with zero (or numerically almost zero) LLE. As the
𝑞-Gaussian distribution is one of the pillars of nonextensive statistical
mechanics, numerical and analytical methods have been used to verify
the existence of this distribution, which includes the Gaussian case in
the limit of 𝑞 → 1. A large number of studies in the literature have
shown that the limiting probability distributions of systems in strongly
chaotic regimes and weakly chaotic regimes evolve on a Gaussian and
a 𝑞-Gaussian, respectively [3–9]. For area-preserving maps such as the
standard, the Web, and the Harper maps, in all previous numerical
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works, it has been observed that the limiting distribution of the condi-
tions located inside the stability islands, where the system is not ergodic
and mixing, and trajectories exhibit a strongly correlated nature, ap-
proach a 𝑞-Gaussian with a specific 𝑞 ≃ 1.935 value which is considered
to be universal behavior for all members of this map family [7,8,10].
On the other hand, recent analytical work on the standard map with the
specific parameter case which makes the system integrable [9] showed
that the asymptotic value of 𝑞 parameter approaches 𝑞 = 2, which
makes the governing distribution to become the Cauchy distribution.
Finally, it is worth noting that recent studies on two generalizations
of the standard map presented that the sticky behavior occurring in
the strongly chaotic sea meets the conditions of the occurrence of
the 𝑞-Gaussian family by exhibiting the lack of mixing and relatively
strongly correlated nature, and the observation of 𝑞-Gaussian limiting
distribution for this behavior confirms the robustness [10,11].

This paper investigates some statistical properties of an
area-preserving elliptical–oval billiard model. Billiards are dynamic
systems in which a point particle travels and experiences collisions with
a closed region. Mathematically, a billiard is defined by a connected
region 𝑄 ⊂ 𝑅𝐷, with boundary 𝜕𝑄 ⊂ 𝑅𝐷−1 which separates 𝑄
from its complement. If the set 𝜕𝑄 is constant concerning time, the
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particle does not change its energy upon collision with the boundary.
It is significant to highlight that three essential control parameters
meticulously govern the boundary configuration. By skillfully manip-
ulating these parameters, a comprehensive spectrum of outcomes can
be achieved, from the well-studied circular [12] and elliptical bil-
liards [13] to the more intricate oval billiard scenarios [14]. Moreover,
by simultaneously manipulating two control parameters, an entirely
novel realm of possibilities is unveiled, culminating in the creation
of an elliptical–oval billiard geometry. Within this closed boundary,
a classical particle of mass 𝑚 travels without being affected by any
external field. Upon collision with the border, the particle exhibits
specular reflection without undergoing any fractional energy loss. The
intriguing phase space of the system showcases a blend of order and
chaos. Depending on the combination of control parameters and initial
conditions, we observe the emergence of KAM (Kolmogorov–Arnold–
Moser) islands, encircled by a chaotic sea, all bounded by sets of
invariant spanning curves [15–17]. Interestingly, depending on the
combination of the control parameters, regions on the boundary exhibit
a transition from positive to negative curvature. Once this change
occurs, all the invariant spanning curves are destroyed. This model
is essential from the point of view of our purpose here by exhibiting
ergodic and nonergodic behaviors in the available phase space, tuning
the control parameters. It also provides a benchmark in the field of
chaos theory.

Billiard systems play a pivotal role in scientific research and ex-
perimentation. Their deference to both analytical and numerical in-
vestigations has enabled comprehensive explorations of various facets,
encompassing chaotic dynamics [18,19], diffusion and particle trans-
port [20,21], the semiclassical limit [22], as well as energy absorption
and dissipation. Fermi pioneered the latter aspect as an endeavor
to try to understand the origins of cosmic ray acceleration [23,24].
Subsequently, this approach has proven valuable in diverse fields, such
as nuclear physics, plasma physics, and astrophysics [25–27]. Recently,
researchers achieved geometric confinement with atomically precise
shapes resembling lattice billiards by utilizing laser-induced quenches
on a TaS2 material [28].

In this study, in a similar fashion to other area-preserving maps
(e.g., the standard map and its two generalizations [6,10,11]), we select
control parameters to provide phase spaces with different stability
island and chaotic sea occupancy ratios. For each parameter set, the
dynamics and LLE characterizations of the phase spaces are analyzed
by choosing random initial conditions from the entire phase space. The
limiting distributions are then computed numerically using many initial
conditions that are iterated over long time steps.

2. The billiard model

This section addresses the intricacies of constructing a nonlinear
mapping that describes the dynamics of a two-dimensional billiard. We
describe the dynamics exhibited by a classical particle characterized
by mass 𝑚, confined within a bounded domain that engenders elastic,
pecular collisions with its enclosing perimeter. Upon impact with the
oundary, the particle undergoes an elastic reflection, retaining its
nitial velocity. When we represent the dimensions of the border using
olar coordinates, the resulting formulation is as follows:

(𝜃, 𝑝, 𝑒, 𝜖) =
[

1 − 𝑒2

1 + 𝑒 cos(𝜃)

]

+ 𝜖 cos(𝑝𝜃) . (1)

Here, the control parameter 𝑒 ∈ [0, 1) dictates the degree of circle
deformation, thereby enabling the recovery of circular and ellipti-
cal shapes. Concurrently, the control parameter 𝜖 ∈ [0, 1) exercises
influence over circle deformation, facilitating the realization of oval
configurations. The integer value 𝑝 and angular parameter 𝜃 ∈ [0, 2𝜋),
denoting a counterclockwise angle concerning the positive horizontal
axis, complete this framework. By setting 𝑒 = 𝜖 = 0, we revisit the
domain with a circular boundary. In instances where 𝑒 ≠ 0 and 𝜖 = 0,
2

Fig. 1. Illustration of the model.

an elliptical edge manifests. The border is oval for scenarios featuring
𝑒 = 0 alongside 𝜖 ≠ 0. An elliptical oval-like boundary configuration
emerges when 𝑒 ≠ 0 and 𝜖 ≠ 0. This meticulous examination of
varying parameter configurations augments our comprehension of the
boundary’s influence on particle dynamics.

Following the established norms of scientific literature, the parti-
cle’s dynamics are expounded through a two-dimensional nonlinear
mapping, symbolized as 𝑇 (𝜃𝑛, 𝛼𝑛) = (𝜃𝑛+1, 𝛼𝑛+1), in a manner that is
raditional within the field. Within this context, the dynamic variable 𝜃𝑛
ignifies the angular position of the particle at the point of contact with
he boundary. At the same time, 𝛼𝑛 represents the angle formed by the
rajectory and the tangent vector corresponding to the boundary’s an-
ular position 𝜃𝑛 (as depicted in Fig. 1). The subscript 𝑛 designates the
article’s 𝑛th collision with the boundary. By using polar coordinates,
e can derive expressions for both 𝑋(𝜃𝑛) and 𝑌 (𝜃𝑛) in the following
anner:

(𝜃𝑛) =
[

1 − 𝑒2

1 + 𝑒 cos(𝜃𝑛)
+ 𝜖 cos(𝑝𝜃𝑛)

]

cos(𝜃𝑛) , (2)

𝑌 (𝜃𝑛) =
[

1 − 𝑒2

1 + 𝑒 cos(𝜃𝑛)
+ 𝜖 cos(𝑝𝜃𝑛)

]

sin(𝜃𝑛) . (3)

Given an initial condition of (𝜃𝑛, 𝛼𝑛), the angle between the tangent
nd the abscissa at the position 𝑋(𝜃𝑛) and 𝑌 (𝜃𝑛) is defined as:

𝑛 = arctan
[

𝑌 ′(𝜃𝑛)
𝑋′(𝜃𝑛)

]

, (4)

with the expressions for 𝑋′(𝜃𝑛) and 𝑌 ′(𝜃𝑛) being:

′(𝜃𝑛) =
𝑑𝑅(𝜃𝑛)
𝑑𝜃𝑛

cos(𝜃𝑛) − 𝑅(𝜃𝑛) sin(𝜃𝑛) , (5)

𝑌 ′(𝜃𝑛) =
𝑑𝑅(𝜃𝑛)
𝑑𝜃𝑛

sin(𝜃𝑛) + 𝑅(𝜃𝑛) cos(𝜃𝑛) . (6)

The term 𝑑𝑅(𝜃𝑛)
𝑑𝜃𝑛

is given by:

𝑑𝑅(𝜃𝑛)
𝑑𝜃𝑛

=
(1 − 𝑒2)𝑒 sin(𝜃𝑛)
[1 + 𝑒 cos(𝜃𝑛)]2

− 𝜖𝑝 sin(𝑝𝜃𝑛). (7)

It is crucial to underscore that the particle remains unaffected by
any external field during its interactions with the boundary. Conse-
quently, the particle maintains a constant velocity along a straight
trajectory until it encounters the boundary. To ascertain the particle’s
new angular position upon its subsequent collision with the border, the
ensuing equation must be solved:

𝑌 (𝜃𝑛+1) − 𝑌 (𝜃𝑛) = tan(𝛼𝑛 + 𝜙𝑛)[𝑋(𝜃𝑛+1) −𝑋(𝜃𝑛)]. (8)

Here, 𝜙𝑛 is derived from the slope between the tangent vector and the

positive horizontal axis. The new positions of the particle at angular
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position 𝜃𝑛+1, denoted as 𝑋(𝜃𝑛+1) and 𝑌 (𝜃𝑛+1), are numerically deter-
ined solutions of Eq. (8). The subsequent angle, 𝛼𝑛+1, representing

he trajectory’s orientation concerning the tangent at 𝜃𝑛+1, is deduced
rom geometric considerations, as illustrated in Fig. 1, and is expressed
s:

𝑛+1 = 𝜙𝑛+1 − (𝛼𝑛 + 𝜙𝑛). (9)

he geometric configuration in Fig. 1 provides insight into deter-
ining the new angle 𝛼𝑛+1. Accordingly, the model’s dynamics are

haracterized by the following map:

∶

⎧

⎪

⎨

⎪

⎩

𝐹 (𝜃𝑛+1) = 𝑅(𝜃𝑛+1) sin(𝜃𝑛+1) − 𝑌 (𝜃𝑛) − tan(𝛼𝑛 + 𝜙𝑛)
× [𝑅(𝜃𝑛+1) cos(𝜃𝑛+1) −𝑋(𝜃𝑛)]

𝛼𝑛+1 = 𝜙𝑛+1 − (𝛼𝑛 + 𝜙𝑛)
, (10)

here 𝜃𝑛+1 is determined numerically as the solution to 𝐹 (𝜃𝑛+1) =
. Here one can calculate 𝑅(𝜃𝑛+1) and 𝜙𝑛+1 from Eqs. (1) and (4)
espectively, changing 𝜃 → 𝜃𝑛+1 and 𝜙𝑛 → 𝜙𝑛+1.

The analyses use 𝑒 = 0 and 𝜖 ≠ 0 conditions to obtain chaotic
ea in the systems. To reduce the time requirement of the numerical
alculations containing a root-finding process, the condition 𝜖 < 𝜖𝑐 is
ocused on, where

𝑐 =
1

1 + 𝑝2
, 𝑝 ≥ 1. (11)

As mentioned earlier, it is important to note that the condition corre-
sponds to the convex boundary formation explained in detail in [29–
31].

We numerically investigate the phase space dynamics and limiting
distributions of the billiard systems with 𝑝 = 1, for 𝜖 = 0, 𝜖 = 0.2,
𝜖 = 0.25, and 𝜖 = 0.49 parameter values. The 𝜖 = 0 and 𝜖 = 0.49
ases are selected to provide extreme scenarios in which the stability
slands and the chaotic sea fully occupy the phase spaces, respectively.
ven though few stability islands can still exist in the 𝜖 = 0.49 case,

they occupy a tiny region in the phase space as given in Fig. 2 and can
be considered statistically negligible. Between these two extremes, the
chaotic sea covers a more extensive region with increasing 𝜖 value, and
he changes in the phase space dynamics and limiting distributions can
e compared. The findings are depicted in Fig. 2 in order to enhance
he visualization of the system’s temporal progression. To show how
he trajectory behavior changes in the phase space according to the
ncrease of the 𝜖 term, for each scenario, we iterate the system 𝑇 = 103

imes, starting from 𝑀 = 100 initial conditions randomly chosen over
he whole phase space. The obtained phase space portraits are given in
he first column of Fig. 2.

.1. Quantification of the phase space behavior: Lyapunov exponent anal-
sis

To quantify the qualitative observation made for the trajectory
ehavior in the phase space portraits, the Benettin algorithm [32] is
sed to calculate the LLE (𝜆) which is defined as

= 1
𝑇

𝑇
∑

𝑖=1
ln
⎛

⎜

⎜

⎝

𝑑(𝑖)
√

2𝛥(0)
𝜃

⎞

⎟

⎟

⎠

, (12)

where 𝑇 is the iteration time and 𝑑(𝑖) =
[

(𝛥(𝑖)
𝜃 )2 + (𝛥(𝑖)

𝛼 )2
]1∕2

is the

Euclidean distance at time 𝑖 in the phase space between initially neigh-
boring trajectories. For each 𝑀 = 2 × 106 initial conditions randomly
chosen from the whole phase space, the LLE is computed separately for
all cases using 𝑇 = 5 × 105 iteration steps. The initial distance between a
andomly chosen initial condition and its neighbor is set to 𝛥(0)

𝛼 = 𝛥(0)
𝜃 =

10−8. To quantify the trajectory behavior in the phase space portrait,
the calculated magnitudes of the LLE are represented by color maps,
which are given in the second column of Fig. 2. This method is similar,
3

but not the same, as previously used in the literature, known as the s
finite-time Lyapunov exponent [33–36]. The calculated LLE values are
nearly zero (𝜆 ≈ 0) for initial conditions within the stability islands,
while they are largely positive for the chaotic trajectories. The stability
islands are said to be in a weakly chaotic regime, consistent with
their LLE magnitudes [6]. Since the system in the strongly chaotic
and weakly chaotic regimes is ergodic and nonergodic, it becomes
possible to distinguish regions of different behavior in the phase space.
In addition, phase space occupation ratios of these different behavior
regions can be determined from LLE spectra.

3. Statistical mechanical characterization of the model

Since the ergodic and nonergodic behaviors can occur separately
and together in the phase space depending on the 𝜖 parameter value,
the limiting distributions of the above scenarios are analyzed by staying
within the Central Limit Theorem (CLT) framework. In accordance with
the previous studies [3–8], the variable

𝑦 = 1
√

𝑇

𝑇
∑

𝑖=1
(𝜃𝑖 − ⟨𝜃⟩) (13)

s defined, where 𝑇 is the number of iterations. In Eq. (13), ⟨… ⟩ denotes
oth time average over 𝑇 iterations and ensemble average over 𝑀
hosen initial conditions, i.e.,

𝜃⟩ = 1
𝑀

1
𝑇

𝑀
∑

𝑙=1

𝑇
∑

𝑖=1
𝜃(𝑙)𝑖 . (14)

The probability distributions are obtained as independent from the
number of iterations used in the numerical calculations by defining the
variable 𝑦 following the CLT. It was recently shown for weakly chaotic
regimes of several dissipative [3,4] and area-preserving maps [6–8,10,
11] that, limiting distributions of the sum of iterates of the map given
in Eq. (13) seem to approach a 𝑞-Gaussian form which can be defined
as

𝑃𝑞(𝑦;𝜇𝑞 , 𝜎𝑞) = 𝐴𝑞

√

𝐵𝑞[1 − (1 − 𝑞)𝐵𝑞(𝑦 − 𝜇𝑞)2]
1

(1−𝑞) (15)

where 𝐴𝑞 is normalization factor, 𝐵𝑞 is the parameter which char-
cterizes the width of the distribution, 𝜇𝑞 is 𝑞-mean value and 𝜎𝑞 is
-variance [37]:

𝑞 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛤
[

5−3𝑞
2(1−𝑞)

]

𝛤
[

2−𝑞
1−𝑞

]

√

1 − 𝑞
𝜋

, 𝑞 < 1

1
√

𝜋
, 𝑞 = 1

𝛤
[

1
𝑞−1

]

𝛤
[

3−𝑞
2(𝑞−1)

]

√

𝑞 − 1
𝜋

, 1 < 𝑞 < 3

(16)

𝑞 = [(3 − 𝑞)𝜎2𝑞 ]
−1. (17)

n Eq. (15), the 𝑞 → 1 limit corresponds to a Gaussian distribution.
hus, this equation can model the limiting distributions of both ergodic
nd nonergodic behaviors.

In our analyses, the limiting distributions of the variable 𝑦 for each
ase are obtained using 5 × 106 randomly chosen initial conditions,
ach iterated 222 times. These values of the parameters are carefully
hosen to ensure statistical characterization of such area-preserving
aps as computational time efficiency is considered. This guarantees

he reliability and accuracy of our analyses. The results are shown
n the third column of Fig. 2 with the corresponding phase space
ortraits and the LLE spectra to relate the phase space dynamics to
he probability distributions. The parameters related to the limiting
istributions (Eq. (15)) of all scenarios are given in Table 1. As seen in
ig. 2, the stability islands with almost zero LLE occupy the entire phase
pace for 𝜖 = 0 case, and the limiting distribution of this nonergodic

ystem exhibits a clear 𝑞-Gaussian with 𝑞 ≃ 1.935. On the other hand,
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Fig. 2. Analyses of the aforementioned billiard systems. The first, second, third, and fourth rows are for 𝜖 = 0, 𝜖 = 0.2, 𝜖 = 0.25 and 𝜖 = 0.49 cases, respectively. For all cases,
we fix the other parameter as 𝑝 = 1. Left column: Phase space portraits, Middle column: LLE color map descriptions of the phase portraits, Right column: Probability distributions
obtained from the initial conditions chosen from the entire phase space. Chaotic behavior dominates larger phase space areas with increasing 𝜖. Probability distributions describing
the whole system, which consists of different behavior regions with different phase space occupation ratios for each case, evolve on a linear combination of 𝑞-Gaussian functions
with different 𝑞 values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
for the 𝜖 = 0.49 case, the whole phase space is dominated by the chaotic
sea with a largely positive LLE, and the system is ergodic and mixing.
As expected, the obtained limiting distribution develops on a Gaussian,
corresponding to 𝑞 → 1 limit in Eq. (15). To avoid confusion, for all
cases, the probability distribution characterizing the whole space is
modeled as a linear combination of 𝑃 (𝑦) distributions, compatible with
the different regimes observed in the phase spaces of the parameter
4

sets, and is given by

𝑃 (𝑦) = 𝑐𝑞1𝑃𝑞1 (𝑦;𝜇𝑞1 , 𝜎𝑞1 ) + 𝑐𝑞2𝑃𝑞2 (𝑦;𝜇𝑞2 , 𝜎𝑞2 ) + 𝑐𝑞3𝑃𝑞3 (𝑦;𝜇𝑞3 , 𝜎𝑞3 ) (18)

where 𝑞 is the index of a probability distribution emerging from a
specific region, 𝑐𝑞 is the contribution ratio of 𝑃𝑞 function to the limiting
distribution of the whole system. In Table 1, the parameters related to
Eq. (18) are given together with that of the probability distributions.
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Table 1
The obtained parameter values of the probability distributions for all billiard systems
given in Fig. 2.
𝐴𝑞=1.935 = 0.3364… , 𝐴𝑞=1.25 = 0.5093… , 𝐴𝑞=1 = 0.5642…

𝑝 = 1, 𝜖 = 0 𝑝 = 1, 𝜖 = 0.2 𝑝 = 1, 𝜖 = 0.25 𝑝 = 1, 𝜖 = 0.49

𝑞1 1.935 1.935 1.935 1.935
𝑞2 1 1 1 1
𝑞3 1 1 1.25 1
𝑐𝑞1 1 0.95 0.580 0
𝑐𝑞2 0 0.05 0.386 1
𝑐𝑞3 0 0 0.034 0
𝐵𝑞1 71 × 103 54 × 103 45 × 103 0
𝐵𝑞2 0 7.81 4.48 2.91
𝐵𝑞3 0 0 0.58 0

Thus, for the 𝜖 = 0 case, 𝑞1 ≃ 1.935, for the 𝜖 = 0.49 case, 𝑞1 = 1 and
or both of them 𝑐𝑞1 = 1. The reason for the use of a three-component
istribution function is explained in the following.

With the increment of the 𝜖 control parameter, the stability islands
issolve according to the Poincaré–Birkhoff Theorem [38] and the KAM
heorem [39] and the chaotic regime develops and occupies larger
reas in the phase space. As a result, the chaotic regime and the stability
slands, i.e., ergodic and nonergodic behavior, coexist in the phase
pace for the 𝜖 = 0.2 and 𝜖 = 0.25 parameters. Upon analyzing the LLE
olor map for the 𝜖 = 0.2 case, it is observed that the stability islands
xhibit LLE values within the range of 𝜆 ⩽ 2.5 × 10−4. In contrast,
he chaotic seas exhibit considerably higher positive LLE values. Using
he LLE ranges, the separation of different behavior portions in the
hase space is achieved, and the phase space occupation ratios of the
haotic regime and stability islands can be determined accurately. The
robability distribution characterizes the whole space, Eq. (18), is ob-
ained as a linear combination of a 𝑞-Gaussian function with 𝑞1 ≃ 1.935
nd a Gaussian function (𝑞2 = 1) and the contribution ratios of these
unctions, 𝑐𝑞1 and 𝑐𝑞2 , to the limiting distribution of the whole system
re the same as the occupation ratios by indicating the accuracy of the
ethod as mentioned above. Here, for this two-component distribution,

𝑞1 + 𝑐𝑞2 = 1.
At first glance, it can be thought that the limiting distribution of the

= 0.25 case would be a combination of a Gaussian and a 𝑞-Gaussian
rising from the initial conditions located in the chaotic sea and the
tability islands, respectively, as in the previous case. However, a three-
omponent probability distribution modeled by Eq. (18) is obtained
here 𝑞1 ≃ 1.935, 𝑞2 = 1, 𝑞3 ≃ 1.25 and 𝑐𝑞1 + 𝑐𝑞2 + 𝑐𝑞3 = 1. It is

mportant to note here that, as in the 𝜖 = 0.2 scenario, the occupation
atio of the stability islands is determined from the LLE spectrum. It is
qual to the contribution ratio of 𝑃𝑞1 (𝑦) in Eq. (18). The sticky behavior
n the chaotic sea is observed when the phase space dynamics and
LE spectrum are analyzed in more detail. As a result of the strong
esonances causing stability islands to dissolve [39], complex tangle
tructures emerge around the archipelagos, and the trajectories within
he tangles, seem to stick to them in the phase space. In Fig. 3a, the
LE heat map obtained by eliminating the stability islands whose LLE
ange is 𝜆 ⩽ 2.5 × 10−4 shows only the chaotic sea contributions and
ifferent chaotic regions with different LLE values can be distinguished.
hen the phase space dynamics of the trajectories are analyzed, it is

bserved that the sticky region mainly develops in the less chaotic
egions, which can be considered as small chaotic bands. Chaotic
rajectories may pass through the sticky regions several times, covering
hem for unpredictable periods before or after wandering throughout
he strongly chaotic sea with seemingly random behavior. In Fig. 3b, an
xample of the sticky regions is given by iterating two initial conditions
n that chaotic band for 4 × 105 times. As can be seen, the black region
ticks to stability islands at the top, and this region is not visited by
he red-colored trajectory during that time interval. Meanwhile, the
lack-colored trajectory does not visit the bottom part of the chaotic
5

and. Though the entire band is an allowed space where the chaotic (
rajectories are expected to cover randomly, some of these trajectories
nly visit these two regions for long time steps. It should be noted that
f a trajectory is traced for the limit of infinite time, the chaotic band
ould be fully covered by a single trajectory, as expected. However, it

s impossible to reach this limit when considering real-life systems and
umerical simulations. It is important to note that the sticky behavior
ccurs also in the strongly chaotic sea. But in the calculation of Eq. (12),
lthough the Euclidean distances are tiny while the trajectory is in
he sticky regions, large distance values originating from the trajectory
ovement in the chaotic sea repress the contribution of the smaller
istance values in the summation of logarithmic functions and result
n largely positive LLE [11]. Since the calculation of the Lyapunov
xponent aims to characterize the long-term behavior of the trajectory,
he Benettin algorithm used in this research is accurate. However, the
hase space occupation ratio of the sticky behavior cannot be deter-
ined directly from the LLE color map because of the unpredictable
hase space dynamics. Due to this, the contribution of the probability
istribution arising from the sticky behavior is determined numerically
rom the obtained probability distribution of the whole system. At this
oint, it is worth noting that stickiness and the detection of sticky
egions have already been the subject of study in the literature [40,41].

Recent studies of the two generalizations of the area-preserving
tandard map have shown that the trajectories within the sticky regions
xhibit a correlated nature and the lack of the mixing property [10,11].
ince two requirements for 𝑞-Gaussian distributions to arise in a system
re fulfilled by the sticky behavior, a second 𝑞-Gaussian function must
ccur at the limiting distribution in addition to the one with 𝑞 ≃ 1.935
merging from the initial conditions located inside the stability islands.
he 𝑞-Gaussian distribution arising from the sticky behavior has a
maller 𝑞 value than 𝑞 ≃ 1.935 because the trajectories visiting the
ticky regions exhibit a weaker correlated nature compared to those
n the stability islands [10,11]. In line with previous analyses of the
tandard map, one can conclude that the 𝑞-Gaussian with 𝑞 ≃ 1.25
ontribution in the limit distribution of the 𝜖 = 0.25 case emerges
ecause of the stickiness observed in the phase space. To reinforce
his inference, the 𝑝 = 2, 𝜖 = 0.1 billiard system exhibiting strong
ticky regions has been analyzed and a 𝑞-Gaussian with 𝑞 ≃ 1.41 has
merged in the three-component probability distribution together with
Gaussian and a 𝑞-Gaussian with 𝑞 ≃ 1.935. However, the presentation
f this analysis is intentionally omitted in this paper to maintain the
oherence and continuity of the narrative. It is worth mentioning that 𝑞-
aussian distribution originating from the sticky behavior converges to
Gaussian in the infinite time limit where the system would be ergodic.
or the present case, to represent the robustness of the Gaussian and 𝑞-
aussian with 𝑞 ≃ 1.935 distributions, initial conditions chosen from the

tability islands and the chaotic sea are also analyzed individually, and
he results are given in Fig. 4. As the 𝑞-Gaussian distribution requires
large number of experiments iterated for long time steps, each of 2 ×
06 conditions iterated 222 times and a clear 𝑞-Gaussian with 𝑞 ≃ 1.935
s obtained as a limiting distribution. On the contrary, the Gaussian
istribution is quickly achieved with 218 iterations applied for 4 × 105

nitial conditions having largely positive LLE values. Strictly speaking,
he limiting distribution of the whole system and its three components
eems to be robust.

. Conclusion

The billiard systems present complex phase space dynamics and
rovide rich observations from the statistical mechanical point of view.
or all cases presenting stability islands in the phase space, a 𝑞-Gaussian
ith 𝑞 ≃ 1.935 is numerically observed in the limiting distribution
escribing the whole system. This value is expected to converge asymp-
otically to 2, as we have already seen for the standard map. While
his distribution is capable of modeling the entire phase space of the

𝑝 = 1, 𝜖 = 0) system, which is entirely nonergodic, it maintains its
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Fig. 3. (a) Lyapunov color map of 𝑝 = 1, 𝜖 = 0.25 where the stability islands are eliminated. Different chaotic regions can be seen. The observation of sticky behavior is made in
the less chaotic region. (b) Sticky region example using two initial condition sets (red color for [𝛼, 𝜃] = [0.63, 2.09] and black color for [0.62079, 0.90107]). Each set is iterated 4 × 105

times. The sticky behavior arising in the phase space causes the contribution of 𝑞-Gaussian with 𝑞 = 1.25 in the limiting distribution describing the whole system of 𝑝 = 1, 𝜖 = 0.25.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. For the 𝑝 = 1, 𝜖 = 0.25 case, probability distributions obtained from the initial conditions chosen only from (a) stability islands and (b) chaotic sea. These limiting
distributions are maintained together in all scenarios consisting of regular and chaotic behavior and, for the 𝑝 = 1, 𝜖 = 0.25 case, they are observed with the one resulting from
the sticky behavior.
existence together with other distributions in the multicomponent prob-
ability distribution for other cases consisting of chaotic sea and stability
islands. When the results obtained in this paper are considered together
with those of other area-preserving maps mentioned in [7,8,10], one
may infer that the consistent observation of a 𝑞-Gaussian distribution
with an approximate value of 𝑞 ≃ 1.935 for initial conditions residing
within the stability islands is a universal phenomenon in numeri-
cal analyses of area-preserving systems. In addition, the relationship
formed between the sticky behavior and the 𝑞-Gaussian distribution is
in conformance with the results of [10,11] where it is analyzed and
explained in detail. Since the limiting distributions modeling the whole
phase space of the selected billiard systems are numerically computed
by using a large number of initial conditions, each iterated for long
time steps, the limiting distributions presented here are considered to
be robust when the finite time constraint and the time requirements of
the analyses are taken into consideration. As a future work, one can
check whether this tendency also exists for other billiard systems with
different boundary definitions.

The results here support the studies demonstrating the use of non-
extensive statistical mechanics for such dynamical systems and provide
6

a further link between this statistical mechanical framework and chaos
theory. From this point of view, three-dimensional integrable maps,
perturbed billiard systems, and quantum billiard systems can be the
focus of future theoretical studies. The present work is thought to pave
the way for studies that shed light on observations made in experi-
mental and simulation studies. Chaotic billiard lasers [42], microwave
billiard systems [43,44], and optical properties of microcavities [45,46]
are among the many experimental studies that can be cited as examples.
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