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Abstract
Some scaling properties describing the convergence for the steady state in
a Hopf bifurcation are discussed. Two different procedures are considered
in the investigation: (i) a phenomenological description obtained from time
series coming from the numerical integration of the system, leading to a
set of critical exponents and hence to scaling laws; (ii) a direct solution of
the differential equations, which is possible only in the normal form. At
the bifurcation, the convergence to the stationary state obeys a generalized
and homogeneous function. For short time, the dynamics giving by the dis-
tance from the fixed point is mostly constant when a critical time is reached
hence changing the dynamics to a convergence for the steady state given
by a power law. Both the size of the constant plateau and the characteristic
crossover time depend on the initial distance from the fixed point. Near the
bifurcation, the convergence is described by an exponential decay with a
relaxation time given by a power law.

©2018 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

In general, the dependence on one or more parameters characterizes most of the dynamical systems. In the
simple harmonic oscillator, the natural frequency of oscillation is an example of such parameter. The parameter
variation may change the qualitative structure of the flow of solutions related to a dissipative dynamical system
therefore changing the topological solution of a given attractor. A bifurcation is the name given to the qualitative
change in the dynamics [1] due to a parameter variation. Bifurcations are observed in a variety of systems
including dynamical population [2, 3], electric circuits [4, 5], chemical reactions [6, 7], discrete mappings [8, 9],
laser [10–12] and many others [13–15].

There are two different classes of bifurcations: (i) local and; (ii) global. In a local bifurcation the variation of
a control parameter produces a change of stability of a fixed point, indeed an attractor, and hence the topological
modifications in the system can be confirmed by an investigation near the fixed point, therefore a local analysis.
For a global bifurcation, invariant structures collide with each other and this include a collision between an
invariant manifold and chaotic attractor, yielding in a destruction of the chaotic attractor. As a consequence,
a major change in the global topology of the system can not be foreseen by a local analysis of fixed point.
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In this class of bifurcation lives the so called crisis events [16–19]. We concentrate in a special type of local
bifurcation, namely Hopf bifurcation. The achievement of the stationary state of a dissipative system, in many
cases, leads to attractors in the phase space. Such attractors might be of zero dimension, id est fixed points, or
one-dimensional - limit cycles - or higher dimension attractors. The eigenvalues of the Jacobian matrix for the
dynamical equations of the system, while evaluated at the attractors, give their stability. The attractor is reached
while an initial condition is given along the basin of attraction of an attractor and evolved for a sufficient long
time, therefore an asymptotic dynamics. By asymptotic, one understands as long enough time such as t → ∞.

However a clear discussion regarding the dynamics evolving towards the attractor and its corresponding
scaling properties were, so far, not made. Our attempt here is to fill up this gap. Therefore, the main goal of this
work is to explore the evolution towards the steady state at and near at a Hopf bifurcation. We focus particularly
in its normal form. To do so we shall apply a scaling formalism like the one used in statistical mechanics [20,21]
to describe phase transitions [22–24]. We consider a dynamical system described by a set of ordinary differential
equations written in the so-called normal form. It mimics the dynamics of a complex system however keeping
only the lowest nonlinear terms as possible to reproduce the phenomenon. This implies that a complicated set
of equations can be expanded in Taylor series and that the normal form reproduces all the dynamics of such set
of equations near the criticality.

Before the bifurcation, the dynamics converges to a fixed point which is asymptotically stable. At the
bifurcation, the fixed point loses stability and after the bifurcation it repeals the dynamics which converges to a
closed orbit in a plane, indeed a limit cycle. Because the attractor is a closed cycle in a plane, it turns out that the
polar coordinates is the most convenient set of variables to describe the dynamics, hence the dynamics is obtained
by the radius, ρ , and angle φ . At the bifurcation, we notice the following: given an initial condition close to the
fixed point and inside of the basin of attraction of the fixed point, the dynamical variable ρ keeps almost constant
in a long plateau until it suffers a changeover marked by a characteristic crossover time and decays to the fixed
point with a behavior described by a power law. The size of the plateau depends on the initial distance from
the fixed point as so the crossover time. This type of dynamics obeys a generalized and homogeneous function
that leads to a set of three critical exponents yielding also in a scaling law. Near the bifurcation, the dynamics
is no longer described by a homogeneous function, but rather by an exponential decay. The relaxation time is
given by a power law whose argument corresponds to the distance, in the parameter, to where the bifurcation
happened.

This paper is organized as follows. In Section 2 we discuss the normal form of Hopf bifurcation. Section 3
is devoted to describe a phenomenological approach based on a set of three scaling hypotheses leading to critical
exponents and hence to a scaling law. In Section 4 we dedicate to investigate an analytical description of the
convergence to the steady state in the Hopf bifurcation confirming the results obtained by numerical simulation.
Discussions and conclusions are made in Section 5.

2 The normal form of the Hopf Bifurcation

A set of differential equations that describes a Hopf bifurcation [1] is written as

ẋ = xμ −w0y+(ax−by)(x2 + y2)+O(5), (1)

ẏ = yμ +w0x+(ay+bx)(x2 + y2)+O(5), (2)

where x and y are dynamical variables, μ is a control parameter, a, b and w0 are constants. Here the term O(5)
represents the higher-order term of the type xk1 and yk2 with k1 + k2 = 5. The following lemma is proved in
Appendix this paper.
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Fig. 1 Phase portraits for y vs. x for values of μ : (a) before and, (b) after the bifurcation, respectively.

Theorem 1. The system described by equations (1) and (2) is locally topologically equivalent near the origin
to system described by equations (3) and (4).

ẋ = xμ −w0y+(ax−by)(x2 + y2), (3)

ẏ = yμ +w0x+(ay+bx)(x2 + y2). (4)

Therefore, the higher-order terms in the set of equations do not interfere in the bifurcation behavior of the system.
Since after the bifurcation the dynamics lives in a plane, it is convenient to use polar coordinates instead of

rectangular variables. Fixing w0 = 1 and a =−1, equations (3) and (4) can be written in polar coordinates as

dρ
dt

= μρ −ρ3, (5)

dφ
dt

= 1+bρ2, (6)

where ρ and φ describe the radial and the angular coordinates, respectively. Besides that, μ controls the stability
of the fixed point at the origin, w0 gives the frequency of infinitesimal oscillations, and b is a free parameter. In
the next section we discuss the scaling properties of dynamics at a Hopf bifurcation.

3 A phenomenological description and scaling properties

We discuss now a phenomenological approach to explore the evolution towards the steady state at and near at
a Hopf bifurcation. As we could see in the previous section, the set of equations (5) and (6) are characterized
by radial and angular variables. However, to explore the scaling properties that characterize the bifurcation, the
equations are analyzed separately. We start first with the radial equation.

The fixed points are obtained by solving f (ρ) = μρ −ρ3 = 0. The solutions have physical meaning only
when ρ ≥ 0. We therefore end up with two fixed points ρ∗

1 = 0, and ρ∗
2 =

√μ . As we can see in Figure 1, when
μ < 0 the origin ρ∗

1 = 0 becomes a stable spiral whose sense of rotation depends on the sign of w0. For μ = 0
the origin is still a stable spiral however the speed of convergence is different from μ < 0. Finally, for μ > 0
there is an unstable spiral at the origin and a stable circular limit cycle at ρ∗

2 =
√μ , as discussed in [1].

The natural variable to describe the decay to the steady state is the distance from the fixed point [25]. So, for
the fixed point ρ∗

1 = 0 the distance taken from the stationary state is the own dynamical variable ρ(t). The decay
to the steady state must also depend of the time t, the initial condition ρ0, and the parameter μ . Since μ = 0
defines the bifurcation, the convergence to the fixed point is shown in Figure 2 for different initial conditions of
ρ0.

We see from Figure 2 that depending on the initial condition ρ0, the dynamics stays in a constant plateau
for different intervals of time until eventually reaching a characteristic crossover time, tx, and the orbit changes
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Fig. 2 Convergence to the steady state at ρ∗
1 = 0 for different initial conditions as shown in the figure. The parameter used

was μ = 0 and the differential equations (5) and (6) were numerical integrated using a 4th order Runge-Kutta algorithm.
We chose also w0 = 1.0 and b = 1.0.

from a constant regime to a power law decay given by a critical exponent βρ . We notice that the length of the
plateau shows a clear dependence on the initial condition ρ0. Based on the behavior observed from Figure 2, we
can propose the following scale hypotheses:

1. For a short interval of time t, say t � tx, the convergence to the steady state is given by

ρ(t) ∝ ραρ
0 , t � tx. (7)

A quick analysis of Figure 2 allows us to conclude that αρ = 1.

2. For a sufficient large t, say t � tx, the convergence to the steady state is given by

ρ(t) ∝ tβρ , t � tx, (8)

where βρ gives the decay exponent.

3. The characteristic crossover time tx that describes the changeover from a constant regime to a power law
decay is given by

tx ∝ ρ0
zρ , (9)

where zρ is called as the changeover exponent.

The exponents zρ and βρ are obtained by their specific plots. After the constant plateau, a power law fitting
gives βρ =−0.499(3)�−0.5. To obtain the exponent zρ we need to analyze the behavior of tx vs. ρ0, as shown
in Figure 3. The slope obtained for tρ vs. ρ0 is zρ =−2.00360(6) �−2.

Based on the behavior shown in Figure 2 and considering the three scaling hypotheses, it is possible to
describe the behavior of ρ as a homogeneous and generalized function of the variables t and ρ0, when μ = 0, as

ρ(ρ0, t) = �ρ(�cρ0,�
dt), (10)

where � is a scaling factor, c and d are characteristic exponents. As � is a scaling factor, we chose �cρ0 = 1,
therefore leading to �= ρ−1/c

0 . By substituting this expression in equation (10) we end up with

ρ(ρ0, t) = ρ−1/c
0 ρ(1,ρ−d/c

0 t). (11)
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Fig. 3 Plot of the crossover time tx against the initial condition ρ0 together with its power law fitting giving zρ =
−2.00360(6).

We assume ρ(1,ρ−d/c
0 t) as a constant for t � tx. Comparing equation (11) with the first scaling hypothesis we

conclude that αρ =−1/c.
We now chose �cρ0 = 1 yielding �= t−1/c. Substituting in equation (10) we obtain for t � tx that

ρ(ρ0, t) ∝ t−1/d . (12)

A direct comparison of this result with the second scaling hypothesis gives βρ = −1/d. Finally, by comparing

the two expressions obtained for the scaling factor � we arrive in tx = ραρ/βρ
0 . A comparison with the third

scaling hypothesis allows us to obtain the following scaling law

zρ = αρ/βρ . (13)

The knowledge of any two exponents allows determining the third one by substituting equation (13). Besides
that, the exponents can also be used to rescale the variables ρ(t) and t in a convenient way such that ρ → ρ/ραρ

0
and t → t/ρ zρ

0 and overlap all curves of ρ(t) vs. t shown in Fig. 2 onto a single and hence universal curve, as
shown in Figure 4.

Once we have discussed the convergence to the steady state at the bifurcation point, we now discuss the
dynamics for μ �= 0 which characterizes the neighborhood of a Hopf bifurcation. The convergence to the steady
state is marked by an exponential law of the type

ρ(t)−ρ∗ � (ρ0 −ρ∗)e−t/τ , (14)

where τ is the relaxation time described by
τ ∝ μδ , (15)

where δ is a relaxation exponent. The achievement of the relaxation time τ is discussed as follows. An initial
condition is given along the basin of attraction of the attractor. The dynamics is integrated in time using a 4th
order Runge-Kutta algorithm. As soon as the distance from the attractor reaches a threshold smaller than 10−8,
the integration is interrupted, the time until that point is registered and another simulation is started for a different
value of μ . Figure 5 shows the behavior of τ vs. μ . A power law fitting gives δ =−0.969(9) �−1.
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Fig. 5 Plot of the behavior of relaxation time τ against μ . A power law fitting furnishes δ =−0.969(9)�−1.

Let us now discuss the scaling results obtained for the angular equation (see equation (6)). Figure 6 shows
the behavior of φ vs. t for different initial conditions and considering the parameter μ = 0. We see that different
initial conditions produce different curves. Depending on the initial value of φ0, the orbits stay in a plateau of
constant φ for different ranges of time. Moreover after reaching the crossover time, tx, the orbit changes from
a constant regime to a power law growth characterized by the critical exponent βφ . The length of the plateau
depends on the initial condition φ0.
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Fig. 6 Plot of the angular variable φ as a function of time t for different initial conditions, as labeled in the figure. The
parameter used was μ = 0.

This behavior allows us to announce the hypotheses:

1. For t � tx, the dynamical variable φ behaves as

φ(t) ∝ φαφ
0 , t � tx, (16)

where from Figure 6 we see easily that αφ = 1.

2. For large t, typically t � tx, the dynamics is as follows

φ(t) ∝ tβφ , t � tx. (17)

3. The characteristic crossover time tx that describes the changeover from a constant regime to a power law
growth is given by

tx ∝ φ0
zφ , (18)

where zφ gives the changeover exponent.

The exponents zφ and βφ are obtained by their specific plots. After the constant plateau, a power law fitting
gives βφ = 0.996(1) � 1. To obtain the exponent zφ we need to analyze the behavior of tx vs. φ0, see Figure
7. The slope obtained for tx vs. φ0 is zφ = 1.00383(5) � 1. These scaling hypotheses lead to the same scaling
law as discussed before, therefore we obtain that zφ = αφ/βφ . When the dynamical variables are scaled as
φ → φ/φαφ

0 and t → t/φ zφ
0 , all curves of φ(t) vs. t are overlapped into a single and universal curve, see figure

8. The dynamics of φ vs. t for μ �= 0 is remarkable similar to the results obtained above. In the next section,
we discuss the convergence to the steady state for a Hopf bifurcation by considering an analytical approach that
involves solving the differentials equations (5) and (6) for both μ = 0 and μ �= 0.

4 An analytical approach to the steady state for the Hopf Bifurcation

Let us now apply the scale formalism to explore the Hopf bifurcation considering the solution of the differential
equations (5) and (6). We start with considering the evolution towards the fixed point at the bifurcation point
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μ = 0. The differential equation is then written as

dρ
dt

=−ρ3. (19)

A straightforward integration gives
ρ(t) =

ρ0�
1+2tρ2

0

. (20)

Let now discuss the implications of equation (20) for specific ranges of t. Considering the case where 2tρ2
0 � 1,

which is equal to t � tx, we realize that ρ(t) ∝ ρ0. Therefore, according to the first scaling hypothesis for the
radial coordinate we can say the critical exponent αρ = 1. However, in the case 2tρ2

0 � 1 that corresponds to
t � tx we get

ρ(t) ∝ t−1/2. (21)

A quick comparison with the second scaling hypothesis of the previous section tell us that βρ =−1/2. The last
case is when 2tρ2

0 = 1, which is the case of t = tx. Then we end up with

tx ∝ ρ−2
0 . (22)

Finally, according to third scale hypothesis, we can say that zρ = −2. These results reinforce our phenomeno-
logical approach as discussed in the earlier sections. We then discuss the case of μ �= 0, therefore considering
the convergence to the steady state at a neighborhood of a Hopf bifurcation. We have to solve the following
differential equation dρ

dt = μρ −ρ3. A direct integration gives

ρ(t)−√
μ �

√μ
2

e−2μt . (23)

Comparing this result with equations (14) and (15) we get that the relaxation exponent δ =−1. Thus, the results
obtained in this section by considering an analytical approach are in complete agreement with the numerical
results shown in previous section.

A next step is to investigate the angular equation. We consider first the case of μ = 0. The differential
equation, when incorporated the solution of ρ(t) is written as dφ

dt = w0 + b ρ2
0

1+2tρ2
0

. After integration we obtain
the following

φ(t) = φ0 +w0t +
b
2

ln(1+2tρ2
0 ). (24)

Let now discuss the implications of equation (24) for specific ranges of t. Considering the case where
w0t + b

2 ln(1+2tρ2
0 )� φ0, which is equal to t � tx, we realize that φ(t) ∝ φ0 leading to αφ = 1. However, in

the case w0t � φ0 +
b
2 ln(1+2tρ2

0 ) that corresponds to t � tx we get φ(t) ∝ t, giving βφ = 1. The last case is
obtained when w0t = φ0 +

b
2 ln(1+2tρ2

0 )
∼= φ0, which is the case of t = tx. Then we end up with tx ∝ φ0, leading

to zφ = 1. This approximation is valid since the function ln(t) varies slowly as compared to the linear term t.

5 Discussions and conclusions

In a recent result involving bifurcation in 1-D mappings, it was considered particularly a family of logistic-like
mappings [26]. The convergence to the fixed point at a bifurcation was investigated using both the phenomeno-
logical approach, using a scaling function and obtained at the end a scaling law with three critical exponents as
well as an analytical procedure, transforming the equation of differences in a differential equation; later on inte-
grating it easily. The phenomenological investigation considered, as made here, a set of three scaling hypotheses
and specific plots to get the critical exponents. It was proved there [26] the exponent α = 1 is a constant while
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β = −1/γ and z = −γ do depend on the nonlinearity of the mapping. The authors show that for a logistic-like
map of the type xn+1 = Rxn(1− xγ

n), where γ ≥ 1 the scaling law z = α/β is also observed.
Soon after [26], the authors made a Taylor expansion of the second iterated of the mapping and described

with success [27] the critical exponents for a period doubling bifurcation. For this bifurcation, the exponents
do not depend on the nonlinearity of the mapping and are then universal: α = 1, β = −1/2 and z = −2. As
discussed in Refs. [26, 27] the critical exponents are packed in Table 1.

An extension of the procedure was made also for a set of bifurcations observed in ordinary differential
equations (see Ref. [28]) considering a set of three important bifurcations of 1-D flow namely: saddle-node,
transcritical and supercritical pitchfork. The results are summarized in Table 2.

In the present paper, our results extend the formalism to be used in a Hopf bifurcation. Because after the
bifurcation the attractor is a limit cycle in a plane, it turns out to be convenient to use polar coordinate to
investigate the dynamics. Instead of a single set of critical exponent, the dynamics needs two sets, among the
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Table 1 Table of critical exponents α , β , z and δ observed for a family of logistic-like map xn+1 = Rxn(1− xγ
n), as

discussed in Refs. [26, 27].

Bifurcation α β z δ

Pitchfork 1 − 1
γ −γ −1

Transcritical 1 − 1
γ −γ −1

Period doubling 1 − 1
2 −2 −1

Table 2 Table of critical exponents α , β , z and δ for the three bifurcations discussed in Ref [28].

Equation Bifurcation α β z δ
ẋ = μ −x2 Saddle-node 1 −1 −1 − 1

2

ẋ = μx−x2 Transcritical 1 −1 −1 −1

ẋ = μx−x3 Supercritical pitchfork 1 − 1
2 −2 −1

Table 3 Table of critical exponents αρ ,φ , βρ ,φ , zρ ,φ and δ for a Hopf bifurcation.

Radial Angular

α 1 1

β −1/2 1

z −2 1

δ −1 –

exponent δ . One set describes the convergence in the radial coordinate while the other set describes the evolution
of the angular variable. Our results can be compacted as shown in Table 3.

The results discussed here allow to understand the scaling properties of dynamical variable at and near at
a Hopf bifurcation. Our results can be an alternative form to investigate and classify the type of bifurcation
in experimental systems, e.g., electrical circuits, when the set of equations describing the dynamics are not all
known. Presently we are working in a Chua circuit to investigate such properties experimentally.

Acknowledgements

V.B.S. thanks to FAPESP (2015/23142-0). E.D.L acknowledges support from FAPESP (2012/23688-5) and
CNPq (303707/2015-1) Brazilian agencies.

Appendix: Proof of Lemma 1

Proof. In this appendix we discuss the proof of lemma 1. This proof is remarkably similar to the Kuznetsov’s
procedure made in [29]. Writing equations (1) and (2) into the complex form, we have

ż = z(μ + iw0)+ |z| z2(a+ ib)+ · · · , (25)

and while truncating the higher order terms we obtain

ż = z(μ + iw0)+ |z| z2(a+ ib). (26)

Our objective is to prove that equation (25) is locally topologically equivalent near to the origin to equation
(26). To do that we suppose:
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Fig. 9 The Poincaré (return) map near Hopf Bifurcation (Source: Kuznetsov, 1998, p. 109).

Step 1 (existence and uniqueness of the limit cycle). Writing the equation (25) in polar coordinates (ρ ,φ )
with z = ρeiφ we end up with

dρ
dt

= ρ(μ +aρ2)+Φ(ρ ,φ),

dφ
dt

= w0 +Ψ(ρ ,φ),

where Φ and Ψ are smooth functions of (ρ ,φ ,μ). The terms Φ and Ψ incorporate the higher order terms of the
equation (25). Once both a and w0 are constants we can fix them as a =−1 and w0 = 1. This gives

dρ
dt

= ρ(μ −ρ2)+Φ(ρ ,φ), (27)

dφ
dt

= 1+Ψ(ρ ,φ). (28)

For a given μ , an orbit of the system described by equations (27) and (28) starting from (ρ ,φ) = (ρ0,0) has
a typical representation as shown in figure 9 where ρ = ρ(φ ,ρ0), ρ(0,ρ0) = ρ0 with ρ satisfying the equation

dρ
dφ

=
ρ(μ −ρ2)+R(ρ ,φ)

1+Ψ(ρ ,φ)
= ρ(μ −ρ2)+R(ρ ,φ), (29)

where R(ρ ,φ) is a smooth function that incorporates the higher order terms. Since ρ(φ ,0) ≡ 0 we have

dρ
dφ

(ρ ,0) =
d2ρ

dρdφ
(ρ ,0) =

d2ρ
dφ2 (ρ ,0) = · · ·= 0. (30)

A Taylor series expansion of ρ(φ ,ρ0) is written as

ρ(φ ,ρ0) = u1(φ)ρ0 +u2(φ)ρ2
0 +u3(φ)ρ3

0 + . . . , (31)

where

u1(φ) =
dρ
dρ0

���
ρ0=0

,u2(φ) =
1
2!

d2ρ
dρ2

0

���
ρ0=0

,u3(φ) =
1
3!

d3ρ
dρ3

0

���
ρ0=0

, . . . (32)

Substituting equations (32) in (31) and sorting terms according to power of ρ0, we arrive in the following linear
differential equations

du1(φ)
dφ

= μu1(φ),

du2(φ)
dφ

= μu2(φ),

du3(φ)
dφ

= μu3(φ)−u1(φ)3,
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Fig. 10 Construction of the homeomorphism neat the Hopf bifurcation.

with the initial conditions u1(0) = 1, u2(0) = u3(0) = 0. The solutions for the differential equations above are
respectively

u1(φ) = eμφ ,

u2(φ) = 0,

u3(φ) =
eμφ (1− e2μφ)

2μ
.

Notice that these expressions are independent of R(ρ ,φ). Thus the Poincaré return map ρ0 � ρ1 = ρ(2π,ρ0)
is written as

ρ1 = ρ0e2μπ − e2μπ(2π +O(μ))ρ3
0 +H.O.T., (33)

for all smooth R = H.O.T.. Now according to Ref. [29] this map can be analyzed for sufficiently small ρ0 and
|μ | with the Implicit Function Theorem. By the application of the Implicit Function Theorem we can establish
there is a neighborhood of the origin in which the map has only the trivial fixed point for small μ < 0 and an
additional fixed point, ρ (0)

0 =
√μ + . . ., for small μ > 0. Taking into account that a positive fixed point of the

map corresponds to a limit cycle of the system, we can infer that equations (27) and (28) with any higher-order
terms have a unique (stable) limit cycle bifurcating from the origin and existing for μ > 0 just as equation (26).
Therefore, the higher-order terms do not affect the limit cycle bifurcation in some neighborhood of z = 0 for |μ |
sufficiently small.

Step 2 (Construction of a homeomorphism). Now we have to prove that the phase portrait of equations
(1) and (2) are topologically equivalent to that one obtained from equations (3) and (4). In order to do so, we
establish a small but positive μ . From the step 1 we verified the systems (25) and (26) both have a limit cycle
in some neighborhood of the origin. Notice that the transition from equation (28) to (31) is equivalent to the
introduction of a new time re-parametrization such that the return time to the half-axis φ = 0(mod 2π) is the
same for all orbits starting on this axis with ρ0 > 0. Next, we apply a linear scaling of ρ-coordinate of the system
(28) such that the point of intersection of the cycle and the horizontal half-axis be at ρ =

√μ .
We now define a map �x � x by the following construction (see Ref. [29] for further details). Take a point

x = (x,y) and find values (ρ0,τ0), where τ0 is the minimal time required for an orbit of equation (26) to approach
the point x starting from the horizontal half-axis with ρ = ρ0 and construct an orbit of the system (25) on the
time interval [0,τ0] starting at this point. Denote the resulting point by �x = (�x,�y) (see figure 10). Set �x = 0 for
x = 0. In this way the map constructed is a homeomorphism that, for μ > 0, maps orbits of system (26) in some
neighborhood of the origin into orbits of (25) preserving time direction.
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