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ABSTRACT

The parameter plane investigation for a family of two-dimensional, nonlinear, and area contracting map is made. Several dynamical features
in the system such as tangent, period-doubling, pitchfork, and cusp bifurcations were found and discussed together with cascades of period-
adding, period-doubling, and the Feigeinbaum scenario. The presence of spring and saddle-area structures allow us to conclude that cubic
homoclinic tangencies are present in the system. A set of complex sets such as streets with the same periodicity and the period-adding of
spring-areas are observed in the parameter space of the mapping.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5048513

In this paper, we consider the two-dimensional dissipative nonlin-
ear map1

T :

{

In+1 = |δIn − (1 + δ)ε sin(2πθn)|,

θn+1 = θn + I
γ
n+1 mod(1),

(1)

where I and θ are the two dynamical variables. The parame-
ter ε controls the intensity of the nonlinearity, δ ∈ [0, 1] is the
parameter controlling the amount of dissipation, and γ 6= 0 is a
free parameter leading to the recovery of a number of di�erent
dynamical systems. Inparticular,weperforma thorough, i.e., high
de�nition, study of the parameter plane εδ, which in fact shows
very rich complex structures that we analyze in detail. Moreover,

we report and discuss the existence of novel complex sets: streets
with the same periodicity and the period-adding of spring-areas.
We stress thatmap (1) reproduces several known two-dimensional
dissipative nonlinear mappings. Though, in our investigation we
consider di�erent values of γ , here we concentrate on the repre-
sentative case γ = −1.

I. INTRODUCTION

The investigation of nonlinear mappings is a growing research
�eld since the mappings may have direct applications to the
understanding and characterization of many dynamical systems.
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Applications range from rather di�erent areas including biology,
chemistry, social networks, mathematics, astronomy, physics, and
many others. Among the set of properties present in mappings, a
special characteristic is that they manifest analogous dynamical phe-
nomena as those observed in �ows with the advantage of avoiding
the numerical integration of nonlinear di�erential equations.

To stress the richness of the multi-representative family of the
dissipative nonlinear map (1), we list the following relevant cases.
When δ = 1 map (1) becomes conservative; in this case, several rel-
evant studies were already done.2,3 When γ = −1, the Fermi-Ulam
model, an accelerator model where a particle is con�ned to bounce
between two hard walls su�ering elastic collisions is recovered from
map (1). In this case, the variable I represents the velocity of the
particle and θ denotes the phase of the oscillating wall.4,5Also, a peri-
odically corrugated waveguide system can be described by map (1)
with γ = −1.6,7 This waveguide model describes the dynamics of a
light ray being re�ected by two corrugated surfaces. Here, the vari-
able I corresponds to the light position, while θ denotes the angle
between the incident and the re�ected light. When γ = 1, map-
ping (1) represents the dissipative bouncer model that describes the
motion of a classical particle bouncing elastically from a periodi-
cally time-varying wall in the presence of a constant gravitational
�eld.8 The celebrated Taylor-Chirikov’s map,9 known for describing
the dynamics of a system perturbed by a sequence of pulses, can also
be obtained if γ = 1 in map (1). For γ = −3/2, map (1) describes
the orbital of comets due to the periodic motion of Jupiter.10

It is relevant to mention that an important achievement in the
understanding of map (1) was made for δ = 1 and γ < 0 by means
of a scaling formalism.3 In particular, it was demonstrated that the
variable θn+1 is uncorrelated with θn in the limit of vanishing I. Such
a property leads to di�usion in the variable I, observed along the
chaotic sea in the phase space. Moreover, in the limit of small I, such
di�usion is described by a power law, in the discrete time n, of the
type Irms(n) ∝ (nε2)β with β ∼= 1/2 being the acceleration exponent.
From the statistical mechanics point of view, the exponent β = 1/2
makes the chaotic dynamics of the map to exhibit similar proper-
ties to that of a random walk particle, therefore leading to normal
di�usion. However, the di�usion is not unlimited since the term Iγ

in the second equation of map (1) decreases with the increase of I
therefore producing correlations between θn+1 and θn. Such correla-
tions bring regularity to the phase space allowing both the existence
of stable periodic orbits, generally surrounded by a periodic island
of elliptical shape, and invariant spanning curves in the phase space.
Such curves play a crucial role in the dynamics of the map since they
limit the di�usion of chaotic orbits in the phase space and allow for
a description of the dynamics in the form of scaling laws. In fact,
due to the similarity of map (1) and Taylor-Chirikov’s map near
the transition from local to global chaos, it is possible to calculate
the position of the invariant spanning curves. Indeed, their posi-
tion are given, within a �rst order approximation, by the expression
I�sc ≈ ±ε1/(γ+1). These two barriers, one positive and other nega-
tive, dictate the main properties of the di�usion along the chaotic
sea. Starting from low values of I, an ensemble of particles di�uses
with normal di�usion until reaching a regime of saturation given by
Isat ∝ εα . The saturation exponent is then α = 1/(γ + 1), while the
changeover from growth to the saturation is given by nx ∝ εz , where
z = α/β − 2 = −2γ /(γ + 1).

Regardless of the great di�erence, from the physics point of view,
among the systems listed above all can be represented bymapping (1);
therefore, the investigation of the dynamical properties of this family
of mappings emerges naturally. Approaching to a more realistic situ-
ation, part of this research was carried out in the phase space for the
dissipative case (δ 6= 1).1 There, the behavior of the average action
at the chaotic attractors was studied and showed that dissipation
destroys the di�erent universality classes observed in the nondissi-
pative case leading the dynamics to fall into a single set of critical
exponents. For γ > 0, the relevant scaling laws are given as Irms ∝

(nε2)β , Isat ∝ (1 − δ)α1εα2 , and nx ∝ (1 − δ)z1εz2 , where nx marks
the changeover time from the power law growth of Irms to the sat-
uration. The exponents obtained in Ref. 1 are β = 1/2, α1 = −1/2,
z1 = −1, α2 = 1, and z2 = 2 con�rming that all are independent on
the numerical values of γ .

Therefore, now in the present work, we focus on the param-
eter space. The question here is not about the di�erence between
the conservative and nonconservative cases, since they are trivially
di�erent due to the arising of attractors. Our goal is to recognize
domains of chaoticity and periodicity in the parameter space that
have been largely reported in numerical,11–24 experimental,25–28 and
theoretical29–36 studies (see also references therein) after the sem-
inal work of Fraser and Kapral.37 Such a study does not display
only the best parameters for a certain application, multistability, and
cascade of periodicity domains, but can expose several dynamical
features of a given system as the presence of high stability and homo-
clinic cubic tangencies as well as tangent, period-doubling, pitchfork,
and saddle-focus homoclinic bifurcations without diving into com-
plicated analytical methods. In this context, Lyapunov exponent λ

becomes a very useful tool to investigate the attractor [periodic (λ <

0) and chaotic (λ > 0)] properties: the larger the λ value, the larger
the sensibility to the initial conditions. We also determine diagrams
of periodicity to identify other phenomena with respect to the period
evolution under parameter changes as cascades of period-adding and
period-doubling.

This paper is organized as follows. In Sec. II, we study the
parameter space describing the organization of regular regions using
both the Lyapunov exponent and the period of the orbits. A cusp
bifurcation is observed and characterized. Moreover, a basin of
attraction is obtained for a set of two di�erent attractors near a cusp
bifurcation. Section III is devoted to present our �nal discussion.

II. PARAMETER SPACE

In this section, we present and discuss our numerical results.
For the conservative case, it is well known that the structure of the
phase space is mixed; i.e., it is composed by a large chaotic sea,
limited by invariant spanning curves, surrounding periodic islands
(see Refs. 1–3). However, when dissipation is taken into account, the
mixed structure present in the phase space for the nondissipative
case is destroyed. Depending on the range of the control parame-
ters, chaotic seasmay turn into chaotic attractors while elliptical �xed
points turn into sinks, i.e., attracting �xed points (see Refs. 1 and 38).
To explore the in�uence of the dissipation in the parameter space
δ vs ε, we use two techniques: (i) calculation of the maximum Lya-
punov exponent and (ii) computation of periods. While in the latter,
the period is directly computed by counting the number of points
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FIG. 1. Plot of the parameter space δ vs ε for γ = −1. The color palette indicates the maximum Lyapunov exponent in (a) while in (b) the diagram separates periodic
(colored regions) from the chaotic (white regions) dynamics.

FIG. 2. (a) Amplification of a complex set from Fig. 1(a) colored according to the maximum Lyapunov exponent and (b) its corresponding domain plotted by the period of the
orbits. (c) Zoom-in of the red rectangle in (b) confirming the complexity of the structure.
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that compose the attractor, for (i) we compute the largest Lyapunov
exponent as39

λj = lim
n→∞

1

n
ln

∣

∣

∣
3

(n)
j

∣

∣

∣
, j = 1, 2, . . . , (2)

where 3
(n)
j are the eigenvalues of the matrixM = 5n

i=1Ji(θ , I) and Ji
is the Jacobianmatrix of themapping evaluated along the orbit (θi, Ii).
If at least one λj is positive, then the system is within a chaotic regime.
On the other hand, when trajectories are describing periodic oscilla-
tions, all λj are negative. λ = 0 indicates the attractor is undergoing
a bifurcation.

In our investigation, we vary δ vs ε for di�erent values of γ . But,
since surprisingly we observed similar results, we decided to report
here (δ, ε, γ = −1) as a representative setting of the family of solu-
tions. We emphasize that for the case in which we focus here (i.e.,
γ = −1), the modulus in the �rst equation in (1) is not mandatory;
however, for the family of maps of (1) to be valid for any γ < 0, the
modulus is indispensable so that I

γ

n+1 in the second equation can be
computed. In our simulations, we favor the method of following the
attractor. It means that for a given set of parameters (δ, ε, γ = −1),
the last position of the trajectory in its corresponding attractor was
used as initial condition for the next neighbor set of parameters. For
non-neighbor parameter sets, we consider θ0 = I0 = 0.4 as the ini-
tial condition. The �rst 2 × 105 iterations were assumed as transient
therefore being disregarded in all simulations. Larger transient times
were tested leading to similar results. In all cases, we consider 103 dif-
ferent combinations of δ and ε resulting in a high resolution grid of
106 points in each picture.

Figure 1(a) shows a panoramic view of the parameter space for
mapping (1) colored according to the maximum Lyapunov expo-
nent. Periodic (λ < 0) and chaotic (λ > 0) regimes are highlighted
using, respectively, red to yellow and green to blue color scales. In
Fig. 1(b), the color palette refers to the orbit behavior: periodic orbits
are indicated by colors (the purple corresponds to periods equal
or greater than 8) and chaotic orbits are in white. As one can see,
there is a large number of complex domains with periodicity fol-
lowing well de�ned patterns. Indeed, six streets are formed with
domains that decrease in size and increase in period when δ grows.
Additionally, the periodicity of all streets presents the period-adding
phenomenon,40where the di�erence between the period P of consec-
utive sets in the street is always the same constant: Pn+1 − Pn = 1, in
the present case.

As one can see from Fig. 1, there are several di�erent domains of
periodicity, each one giving particular information about the dynam-
ics of the system.We start to explore the dynamical properties ofmap
(1) with the structure shown in Fig. 2.

In the periodicity region, the two red curves shown in Fig. 2(a)
correspond to the high stability of the periodic attractor. It means
that trajectories converge very fast to attractors along these curves.
In Fig. 2(b), the boundary between the black and white regions is
due to a tangent bifurcation, while the boundary between the black
and green regions is a period-doubling bifurcation as so the next
(between the green and red regions) and the following boundaries
composing a two-dimensional Feigenbaum scenario,41 the route to
chaos via cascade of period-doubling bifurcation. This particular
bifurcation composition forms a structure well studied in the early
1980s, being �rst discovered by Fraser and Kapral.37 They named

this structure as �shhook but one can �nd it with di�erent names in
the literature, for instance, swallow,12 crossroad area,32 shrimp,15 and
more recently as compound window.33 Despite those works, it is not
an easy task de�ning precisely this periodicity set. For a discussion
about it, we refer the reader to Ref. 22. Here, the dynamical system
we are considering develops very similar sets of periodicity than the
one shown in Fig. 2; nevertheless, they do not �t within any previous
de�nition given its smooth transformation; see Fig. 3.

The complexity of this structure is not restricted to the contin-
uous region of periodicity described before. The chaos due to the
Feigenbaum scenario also has interesting properties. According to
Fig. 2(a), it presents low sensibility to the initial conditions (green
region) that contrast with the embedded high sensibility chaotic
region (blue). In addition, it is also the background for a large number
of cascades of self-similar sets of the main periodicity as shown in
Fig. 2(c). Getting deeper into those self-similar sets, note that the
biggest one has a period three times the period P of the main set of
periodicity: (3 × P). And, from it, departs a period-adding cascade
characterized by the constant P. For example, here the main set has
period 2. In fact, in Fig. 2(c), the biggest self-similar set has period
6 and starts the period-adding with periods (3 × 2) → (4 × 2) →

(5 × 2) → · · · → (k × 2) . . . , clearly characterized by the constant
2, the period of the main set. Generically, we name all this sce-
nario (i.e., the main continuous periodicity set and its corresponding
chaotic set) as complex set.

Another important characteristic of the complex set is the
codimension-two cusp bifurcation where, from there, two curves
of the tangent bifurcation depart. Each di�erent region of periodic-
ity has a cusp bifurcation being a remarkable bifurcation structure.
The cusp bifurcation is shown in Fig. 4(a). For that simulation,
we used a set of random initial conditions so that they produced
a not well de�ned shallow region where the two periodic orbits
coexist. The upper and lower boundaries of this region are tangent
bifurcations that lie at the cusp bifurcation on the left side of the

FIG. 3. (a) Plot of sequence of slightly different complex sets colored according to
the maximum Lyapunov exponent and (b) the corresponding period of the orbits.
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FIG. 4. (a) Magnification of a complex structure present in Fig. 2(a) to confirm
a cusp bifurcation. (b) Basin of attraction: Initial conditions in the white (black)
region converge to the red (blue) periodic attractor.

picture. In this case, the cusp bifurcation corresponds to a super-
critical pitchfork bifurcation, a stable �xed point become unstable
giving rise to two new stable ones. The basin of attraction of the
coexisting orbits is shown in Fig. 4(b) for the parameter set (ε, δ) =

(15.1728, 0.093 436 5), the place where the two highly stable curves
(in red) intersect each other.

An interesting result is also found when analyzing the interval
0 < ε < 1. As one can see in Fig. 5(a), there is a street of complex sets
centered at δ = 0 with an accumulation point at ε → 0. Moreover,
Fig. 5(b) shows that the periodicity of the complex sets is the same:
all have period 2. This fact is quite surprising since, in general, it is
observed that in sequences of complex sets, such as in cascades and
period-adding phenomena, the smaller the size of the complex set
the greater the period.17 This street breaks that idea.

Now in Fig. 6, we present two di�erent sets of periodicity.
In contrast to the complex set, it was rigorously demonstrated
by Gonchenko et al.30,42 that they come from a cubic homoclinic
tangency; i.e., an orbit composed by cubic tangencies between the

FIG. 5. (a) Confirmation of the symmetry of the structures living in the parameter
space δ vs ε with respect to δ = 0. In (b), the same symmetry viewed in the
period of the orbits present in the stability regions.

FIG. 6. Plot of the structures resulting from cubic homoclinic tangencies colored
by the Lyapunov exponent: (a) spring-area and (b) saddle-area.

stable and unstable manifolds of a �xed point x0, thereafter the orbit
converges to the �xed point for positive and negative iterations: xn →

x0 for n → ±∞. This structure occurs whenever near the �xed point
the dynamics can be described by a cubic dynamical system. If the
cubic term is negative, there is a spring-area structure, as shown in
Fig. 6(a). If it is positive, the structure is the saddle-area presented
in Fig. 6(b). For more details about the theory, we recommend the
reader to refer to Ref. 42.

Indeed, we want to remark that in Ref. 42, analogous universal
windows of stability were found, i.e., cascades of spring and saddle-
areas, in two-dimensional separatrix maps. Also, there, the role of
cubic and double quadratic homoclinic tangencies in the formation
of such structures was clari�ed and thoroughly described.

The spring and saddle-areas are also composed by regions of
periodic and chaotic behavior. The scenario presented in the chaotic
region of the complex set composed by cascades of self-similar com-
plex sets and period-adding organization is also observed in the
chaotic region of these structures. The di�erence starts with the

FIG. 7. (a) Magnification of the region delimited by a rectangle in Fig. 6(a). (b)
Basin of attraction for the parameter set (ε, δ) = (3.617 44, 0.634 989); the place
where the two high stable curves (red) intersect each other. Initial conditions in the
white (black) region converge to the red (blue) periodic attractor.
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FIG. 8. Plot of the structures resulting from cubic homoclinic tangencies (period-
icity): (a) spring-area and (b) saddle-area. Compare with Fig. 6.

curves of high stability. In the complex set, there are two such curves
intersecting once. In the spring-area, there is just one curve intersect-
ing itself once (see the coexisting attractors and the cusp bifurcation
in Fig. 7), and �nally, in the saddle-area, there is also one curve of
high stability with no intersection.

According to the periodicity, the Feigenbaum scenario is also
presented in both spring and saddle-areas, but the boundaries
between the main bodies of periodicity with the chaotic regions are
di�erent. Let us consider the way from the chaotic region to themain
body composed by the �xed point in Fig. 8 (for instance, a period
P orbit is a �xed point when considering intervals of P iterations).
In the spring-area [Fig. 8(a)], the boundary is caused by a subcriti-
cal period-doubling bifurcation: an unstable �xed point in the white
region becomes stable and gives rise to anunstable period twoorbit in
the black region. In the case of the saddle-area [Fig. 8(b)], the bound-
ary is formed by two tangent bifurcations that met at a subcritical
pitchfork bifurcation; here, the unstable �xed point becomes stable
giving rise to two new unstable �xed points.

FIG. 9. Plot of the parameter space δ vs ε highlighting part of a street shown
in Fig. 1(a) colored by the Lyapunov exponent while in (b) the color identifies the
period of the structure.

As a �nal result, we present in Fig. 9 a street of spring-areas
organized by period-adding; even though the theory predicts cas-
cades of spring and saddle-areas.42 As far as we know, period-adding
in these structures was never reported before; therefore, we con�rm
the �rst evidence of such structure in the family of two-dimensional
mappings described by Eq. (1).

III. FINAL REMARKS AND CONCLUSIONS

We have characterized the mapping of Eq. (1) that reproduces
several known two-dimensional dissipative nonlinear mappings. By
observing structures of periodicity in the high de�nition parameter
space, we identi�ed several dynamical features in the system. Tan-
gent, period-doubling, pitchfork, and cusp bifurcations were found
and discussed in detail so as cascades of period-adding, period-
doubling, and the Feigeinbaum scenario. We also conclude that both
cubic homoclinic tangencies are present in the system due to the
existence of spring and saddle-area structures. Moreover, we showed
novelties that could potentially give insights into new theoretical con-
cepts, as the de�nition of the complex sets, streets with the same
periodicity, and the period-adding of spring-areas. Our analysis,
even deep in nonlinear dynamical theory, is not based on analyti-
cal approaches, most often available only to specialists. Instead, we
consider a very simple method based on detailed simulations of the
parameter space.

We hope that our work could be useful for both: as an exam-
ple of characterization and description of the structure of periodicity
sets and as a motivation for researchers dealing with deep analytical
formalisms.
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