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ABSTRACT

The conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex
phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus,
this limitation imposes the necessity of non-trivial global techniques and lengthy numerical solutions. In this article, we present an attempt
to overcome these problems by including the Fisher information theory in the study of bifurcations. Here, we investigate a Riemannian
metrical structure of local and global bifurcations described in the context of dynamical systems. The introduced metric is based on the
concept of information distance. We examine five contrasting models in detail: saddle-node, transcritical, supercritical pitchfork, subcritical
pitchfork, and homoclinic bifurcations. We found that the metric imposes a curvature scalar R on the parameter space. Also, we discovered
that R diverges to infinity while approaching bifurcation points. We demonstrate that the local stability conditions are recovered from the
interpretations of the curvature R, while global stability is inferred from the character of the Fisher metric. The results are a clear improvement
over those of the conventional theory.
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Geometry has been much applied to nonlinear dynamics with par-

ticular emphasis on the framework of bifurcations and chaos.1–3

Nevertheless, previous attempts lack a meaningful metrical struc-

ture, that is, the expression for the distance between equilibrium

states. In this article, we show that if the information theory is

included in the axioms of nonlinear dynamics, then there exists

a corresponding Riemannian metric, which allows us to repre-

sent dynamical systems by intriguing Riemannian manifolds. The

Riemannian metric and the curvature scalar of these manifolds

are of exceptional interest because they lead to a new measure

of global and local stability of higher order. The interpretation

of the Fisher geometry is a new attempt to extract informa-

tion from complex systems. In addition, information geometry

presents a new hope of telling us something new about dynamic

systems, particularly, where the standard methods show little or

no solution.

I. INTRODUCTION

The main goal of the bifurcation theory is to express sud-
den qualitative changes in the phase portraits of dynamical systems
nearby their local solution branches when control parameters are
changed continuously and smoothly.4,5 Despite the range of applica-
bility, the CBT has, heretofore, been beset by limitations and difficul-
ties. These are due to the fact that the most interesting results of the
CBT are only local. As a consequence of that, there is a necessity to
employ non-trivial global techniques and time-consuming numeri-
cal solutions. In this article, we present an attempt to overcome these
problems in the framework of information geometry.

We remark, parenthetically, that bifurcations may be seen as
the temporal version of thermodynamic phase transitions, where the
asymptotic regime is assumed.6,7 In other words, one may interpret
a phase transition as a bifurcation in the underlying microscopic
dynamics.6
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Recently, many authors have characterized phase transitions
in the parameter space of a wide range of classical and quantum
systems in the framework of the Fisher information geometry.8–19

By introducing a Riemannian metrical structure for the parameter
space through the definition of the Fisher information metric, one
may investigate global and local properties through the study of the
Riemannian curvature scalar (R). In this scenario, the curvature R is
a distinct quantity in three ways. First, the calculation of R is invari-
ant to thermodynamic coordinates. Second, the divergent behavior
of the curvature scalar marks the phenomena of phase transitions in
the vicinity of critical points. Third, finally, the concept of stability
can be measured by analyzing the metric and the curvature R of the
parameter space.

Therefore, the question that is naturally posed here is whether
we may apply information geometry to explore critical aspects of
bifurcations. More precisely, we inquire whether this geometrical
approach may unambiguously extract global and local properties of
bifurcations. This article, the first in a series devoted to the above
questions, is occupied with the formulation of a meaningful Rie-
mannian metrical structure in the framework of dynamical systems
described by differential equations.

Bifurcations refer to a broad range of phenomena in almost
all branches of natural sciences, such as chemical reactions,20–22

electrical circuits,23–25 biology,26–28 and others.29–31 Hence, the appli-
cation of these new geometrical methods may bring new light to
the study of dynamical systems where the CBT has been unsuccess-
ful or incomplete. Based on the above, this article focuses on the
generalization of information theory. In this manner, we introduce
and investigate a Riemannian metrical structure for local and global
bifurcations. Here, the introduced metric is based on Fisher’s infor-
mation distance.18,32,33 We show here that the geometric bifurcation
theory (GBT) correctly predicts the essential critical aspects of the
CBT. In addition, the GBT assigns global and local properties of
dynamical systems.

This article is organized as follows. In Sec. II, we introduce
the formalism of Fisher’s information geometry applied to local
bifurcations. The third section is concerned with the generaliza-
tion of information geometry, in which our attention is placed on
the study of dynamical systems with homoclinic bifurcations. The
fourth section is devoted to the derivation of Fisher’s informa-
tion matrix and curvature R for local bifurcations, in particular,
saddle-node, transcritical, and pitchfork. Here, we present physical
interpretations of the concept of stability in the structural sense. The
fifth section is dedicated to interpreting the curvature R and the Rie-
mannian metric for an example of homoclinic bifurcation. Finally,
Sec. VI is devoted to the conclusion of our results and suggestions
for further research.

II. THEORY

The general program of this section consists of extending the
geometrical methods employed in Fisher’s information geometry
to investigate bifurcations in the framework of dynamical systems.
Therefore, we organize this section as follows. Information the-
ory arises from the investigation of probability density functions19

(PDF). Thus, we shall first dedicate ourselves to constructing a
proper probability distribution to describe nonlinear systems of

differential equations. From the knowledge of such probability
density, which assigns critical aspects of bifurcations, we describe
dynamical systems by the construction of the Riemannian metri-
cal structure of their parameter space. Here, the Riemannian metric
and the curvature scalar are of exceptional interest. Third, we inter-
pret the concept of local and global stability in the background
of information geometry. Fourth, finally, we generalize our origi-
nal geometric approach to investigate non-trivial bifurcations in the
context of two-dimensional systems.

A. Bifurcation and probability density function

The Fisher information geometry has roots in the study of
the manifold of PDFs. The first step to introduce and extend the
geometric methods of information theory is the definition of a
mathematical model of bifurcations in the framework of dynam-
ical systems. Consequently, the second step will be based on the
construction of probability distribution.

The nonlinear differential equation that represents the mathe-
matical model of bifurcations in the context of dynamical systems is
given by

β =
ds

dτ
= 8(s; m) , (1)

in which β is the momentum, s is the order parameter, τ is the time,
and m is the control parameter. In Eq. (1), the normal form8(s; m)
is a function determined by a potential U(s; m) through the relation
8(s; m) = −∂U (s; m) /∂s. Here, 8(s; m) = 0 assigns the equilib-
rium state s∗ of the order parameter.34 A further remark concerns the
condition for the appearance of bifurcations. For the model above
exhibits bifurcations, we should observe that the eigenvalue 3 of
Eq. (1) must be zero at the critical value (s∗C, mC). That is,

3 =
(

∂8(s; m)

∂s

)

(s∗C ,mC)
= 0. (2)

This latter addresses the general mathematical condition on the
occurrence of bifurcations in the dynamical system.

Furthermore, we should remark here that Eq. (1), which arises
from Hamiltonian equations, is unambiguously advantageous since
it describes the general form of the dynamical systems in nonlinear
sciences.4,6

We shall now present the procedure which will be employed
for constructing the PDF for the dynamic systems in question. For
the continuous system described by Eq. (1), the variable s follows
a trajectory through time so that each value of s is only associated
with one value of time τ . Following this one-to-one correspondence
between the values of s and τ , we may write explicitly4,6,35

ρ (s) ds = ρ (τ) dτ , (3)

where ρ (s) denotes the probability density for observing a particular
value of s and ρ (τ) reads the probability of observing a particular
time τ . Nevertheless, when sampling along a time interval [0 − T],
we shall expressly assume that all times are equally probable. Thus,
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Eq. (3) here simplifies to

ρ (s) =
1

T 8(s; m)
, (4)

in virtue of Eq. (1).
The latter equation teaches us that the probability density to

observe a particular value of s is inversely proportional to the normal
form of the dynamical systems of Eq. (1). This formulation is not
a new idea here. In fact, it is present in the recent developments of
the Fisher information to study sustainable and ecological systems.35

Based on the correspondence principle, Eq. (3), the PDF formulation
presented right above yields a peculiar expression for the probability
in the framework of dynamical systems.

On the other hand, we note that Eq. (4) diverges at the equi-
librium state of 8(s; m). Therefore, we may conclude that the exis-
tence of such divergence serves to emphasize that the present PDF
must, in some respect, be incomplete. Based on the above, we now
seek a formulation that enables us to retain the evident correspon-
dence principle and offers something akin to the advantage of the
mathematical model of bifurcations defined above.

The desired formulation is to be found in that between the
moment β of the dynamical system and its normal form 8(s; m)
by writing the probability density ρ(β) of the variable β from the
knowledge of the probability ρ(s) of s. To exploit this alternative,
a transformation of variables is necessary to enable us to deter-
mine ρ(β). We shall perform this transformation with the aid of the
Fourier integral representation of characteristic functions.36–38

In order to alter Eq. (4) in the above-outlined manner, let g(κ)
be the characteristic function of the variable β . If β = 8(s; m), then
we write

g(κ) =
{

exp (J κ β)
}

=
{

exp (J κ 8 (s; m))
}

or simply

g(κ) =
∫

ds eJ κ 8(s;m)ρ (s) , (5)

where J denotes the imaginary unity
√

−1.
Nevertheless,

ρ (β) =
1

2π

∫

dκ e−J κ βg (κ) , (6)

whence we obtain39

ρ (β) =
1

2π

∫ ∫

ds dκ exp
[

−J κ (β −8(s; m))
]

ρ (s) . (7)

On recalling the integral representation of Dirac delta distribu-
tion,

δ (s) =
1

2π

∫

dκ exp (−J κ s) , (8)

we arrive at

ρ (β) =
∫

ds δ (β −8(s; m)) ρ (s) . (9)

An alternative representation is obtained by writing

ρ (β) =
1

T

∫ T

0

ρ (τ) dτ δ (β −8(s; m)) , (10)

in virtue of Eq. (3). However, the right-hand side of the integrand is
independent of τ . Thus, the solution to Eq. (10) has the form

ρ(β) = δ (β −8(s; m)) , (11)

which may be reduced in the following well-known Gaussian
representation38,40

ρ (β) = δT (β −8(s; m)) =
√

T

π
exp

[

− (β −8(s; m))2 T
]

. (12)

We must recognize that the latter equation is only consistent
when T is large. Nevertheless, to make Eq. (12) mathematically
and physically meaningful without significantly altering thereby the
physical properties represented in the above formulation, we must
address further considerations on how large T must be in the context
of dynamical systems and bifurcations.

It is well-known that bifurcations may be interpreted as the
temporal version of phase transitions.6,7 Nevertheless, we must bring
to our attention that phase transitions are only well-defined in the
thermodynamic limit. In this limit, the system’s extensive parame-
ters, for example, the volume (V) and the number of particles (N),
are allowed to increase without bound such that the intensive ratios,
e.g., N/V, remain finite.41

Hence, one can conclude that T here should be infinitely large
so that we may interpret bifurcations as the temporal version of
phase transitions. Indeed, one must understand T as a limiting case
to what one expects to be a correct approximation for the solutions
of Eq. (1) at long but finite times. In this manner, we infer that
Eq. (12) is valid when T acts as a limit that must be as large as we
like. As a consequence of that, we may keep the dominant terms of
Eq. (12) and draw out the relevant concepts of bifurcations. This
is similar to the context of statistical mechanics, in which the ther-
modynamic limit is crucial for physical systems to exhibit clear-cut
phase transitions.6,41

The derivation of the probability density ρ(β) proves the cor-
rectness of the considered choice of transformation of variables,
Eq. (5), because we have obtained a compelling PDF that removes
the divergent character of Eq. (4) and assigns critical aspects of the
bifurcations given by Eq. (1). Based on the above, we now proceed
to the construction of information geometry in the framework of
dynamical systems.

B. Information geometry

To introduce the Fisher Riemannian metrical structure into the
space of parameters of dynamical systems, let us consider � a fam-
ily of probability distributions that is smoothly parametrized by two
real parameters,18,32,33 in which

� =
{

PX =
ρ(β ; X)

T
; T ∈ R

+; X ∈ R
2, X =

(

X1, X2
)

}

. (13)

The statistical model � of random variable β carries the
structure of a smooth Riemannian manifold M with respect to
which X =

(

X1, X2
)

= (s, m) play the role of coordinates of a point
PX ∈ �. Here, the model’s metric is defined by the Fisher matrix
H = (Gαµ(X)). The components of the metric tensor are calculated
as the expectation of a product that involves partial derivatives of the
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PDF of Eq. (12). That is,

G11(X) = 〈
(

W1
)2〉 =

∫ +∞

−∞
dβ

[

∂2

∂s2

(

−lnρ(β)

T

) ]

ρ(β), (14)

G22(X) = 〈
(

W2
)2〉 =

∫ +∞

−∞
dβ

[

∂2

∂m2

(

−lnρ(β)

T

) ]

ρ(β), (15)

where the statistical quantities Wµ = ∂ lnρ/∂Xµ form a basis of a
vector space of random variable β , which is identified with the tan-
gent space ηX�. Consequently, we can define the operator of covari-
ant differentiation and some of the different connections using the
one-to-one correspondence between� and Riemannian manifold.

On account of the fact that the probability to measure W1

does not necessarily affect W2 and both have equal probability to
be observed, we may then write18,32,33,41

G21(X) = 〈W1W2〉 =
∫ +∞

−∞
dβ

[

∂ lnρ (β)

∂s

∂ lnρ (β)

∂m

]

ρ(β)

T
, (16)

which describes the off-diagonal components of the Fisher informa-
tion matrix.

An alternative representation, the one we shall consider for
the calculations henceforth, is obtained by substituting Eq. (12) into
Eqs. (14)–(16), in which we obtain

G11 = 〈
(

W1
)2〉 = lim

T→∞

∫ +∞

−∞
dβ A(β)δT (β −8(s; m)) , (17)

where

A(β) =
1

T

[

∂2

∂s2

(

−ln
[

δT (β −8(s; m))
])

]

, (18)

G22 = 〈
(

W2
)2〉 = lim

T→∞

∫ +∞

−∞
dβ B(β)δT (β −8(s; m)) , (19)

where

B(β) =
1

T

[

∂2

∂m2

(

−ln
[

δT (β −8(s; m))
])

]

(20)

and

G21 = 〈W1W2〉 = lim
T→∞

∫ +∞

−∞
dβ C(β)δT (β −8(s; m)) , (21)

where

C(β) =
1

T

[

∂ ln
[

δT (β −8(s; m))
]

∂s

∂ ln
[

δT (β −8(s; m))
]

∂m

]

.

(22)

Nevertheless, we may, in virtue of the well-known properties of
Dirac delta distribution, simply write42

G11 = lim
T→∞

√

T

π

∫ +∞

−∞
dβ Ã(β)e−(β−8(s;m))2T, (23)

where

Ã(β) =
[

2

(

∂8

∂s

)2

− 2 (β −8)

(

∂28

∂s2

)

]

. (24)

It can also be shown, analogous to Eq. (23), that

G22 = lim
T→∞

√

T

π

∫ +∞

−∞
dβ B̃(β)e−(β−8(s;m))2T, (25)

where

B̃(β) =
[

2

(

∂8

∂m

)2

− 2 (β −8)

(

∂28

∂m2

)

]

. (26)

For the off-diagonal components, we have

G21 = G12 = lim
T→∞

√

T

π

∫ +∞

−∞
dβ C̃(β)e−(β−8(s;m))2T, (27)

in which

C̃(β) =
[

4T

(

∂8

∂s

) (

∂8

∂m

)

(β −8)2
]

. (28)

On recalling that38,42

lim
T→∞

√

T

π

∫ +∞

−∞
dβ ψ(β)exp

[

−(β −8(s; m))2 T
]

= ψ(8), (29)

the solutions to Eqs. (23)–(25) have the form

G11 = 2

(

∂8(s; m)

∂s

)2

, (30)

G22 = 2

(

∂8(s; m)

∂m

)2

, (31)

and

G21 = G12 = 0. (32)

Consequently, the Fisher information matrix H is given by

H =









2

(

∂8(s; m)

∂s

)2

0

0 2

(

∂8(s; m)

∂m

)2









. (33)

We note, incidentally, that W1 and W2 are statistically inde-
pendent. As a consequence of that, we then have the expectation or
the average value of 〈W1 W2〉 equal to the product of their mean
values,36,37,41 that is, 〈W1〉〈W2〉. Since each of these is zero, so is
G21 = G12.

We may conclude, without further calculation, that the Fisher
matrix H = Gαµ(X) is positive definite because it is a diagonal
square matrix of the squared first-order derivatives of the normal
form 8(s; m), which show themselves independent of β . Finally,
we should remark that the matrix H led us to the well-known
geometrically invariant second fundamental form,32,43

d`2 = G11(ds)2 + G22(dm)2, (34)

in which d` denotes the local quadratic distance in the parameter
space. With our aim of deriving local statements in mind, we define
the metric in respect to the reference fixed-point s∗. Therefore, we
must recognize that the metric elements Gαµ are evaluated in the
state s = s∗. Defining Riemannian metrics in the neighborhood of a
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reference state is not a new idea here. This has already been discussed
in other contexts.44,45 From the derivation of the Fisher metric, which
describes a proper distance in the parameter space of dynamical sys-
tems, we shall now proceed to the calculation of the Riemannian
curvature scalar.

The curvature R is a natural consequence and an immedi-
ate application of the Fisher geometry above, given the fact that
it reveals intrinsic properties of physical systems, especially in the
neighborhood of the critical points. In addition, we should note that
the calculation of R is invariant to thermodynamic coordinates, and
the divergent behavior of the curvature scalar is rigorously related to
the well-known phenomena of phase transitions.

The metric Eq. (34) induces a curvature R on the manifold of
the parameter space X,46

R =
1

√
G

[

∂

∂s

(

1
√

G

∂G22

∂s

)

+
∂

∂m

(

1
√

G

∂G11

∂m

)]

, (35)

in which G ≡ G11G22. Originally, the expression of the curvature
scalar presents a negative sign. Here, we, henceforth, confine our-
selves to the standard Weinberg sign convention,13,47 in which the
negative sign of R is suppressed.

In order to consider R as a new quantity to investigate dynami-
cal systems, we must, therefore, interpret it accordingly to our statis-
tical approach. Furthermore, we must investigate the conditions for
the occurrence of bifurcations in Eq. (35).

We recognize that the curvature R presented right above is
connected to our statistical formulation since, statistically, we can
conclude that R is a function of the second and the third moments of
the variables Wα . Physically, we recognize that R is inversely propor-
tional to the first-order derivatives of 8(s; m). In general, however,
∂8(s; m)/∂m contributes with a non-zero constant. Hence, we may
see from Eq. (35) that

R → ±∞ as

(

∂8

∂s

)

→ 0, (36)

which directly implies the remarkable condition for the occurrence
of bifurcations, Eq. (2), when the metric coefficients are evalu-
ated at the critical value (s∗C, mC). Thus, we predict that R should
diverge at the singularities of dynamical systems, which appear at the
bifurcation points, i.e., at critical values of the equilibrium state s∗.

In the investigation of physical systems in the framework of
information geometry, we must also recognize that the divergent
behavior of R marks the phenomena of phase transitions at critical
points.8–12,16,17 Therefore, our formulation is in good agreement with
the standpoint of information geometry as we may conclude that
the divergence of R implies the phenomena of bifurcations nearby
the singularities of dynamical systems, just like the divergence of R
refers to phase transitions in statistical mechanics.

To conclude, we have obtained a new intriguing possibility
to investigate and describe dynamical systems, particularly in the
neighborhood of bifurcation points, through the calculation of the
Fisher metric and curvature R.

C. The sign of R

Stability is an additional crucial concept in the understanding
of physical systems. In the present section, we investigate the con-
cepts of local and global stabilities in the framework of the recent
developments of information geometry based on the interpretation
of the Riemannian metric and the curvature scalar’s sign.8–12,16–19

In actuality, the behavior of the second-order derivatives of
thermodynamic potentials reads the local stability criteria of a given
physical system in statistical mechanics. More specifically, if a ther-
modynamic potential is a convex function of its extensive variables
and a concave function of its intensive variables, we may then
conclude that the physical system is stable.48

In the framework of information geometry, however, Janyszek
and Mrugała found that the curvature R is a function of the second
and third derivatives of thermodynamic potentials. Furthermore, R
diverges at critical points. As a consequence of these facts, R may
also be interpreted as a higher-order measure of stability.16

Previous studies revealed important conclusions about the
interpretation of the sign of R on stability.16,17,49 In the study of quan-
tum gases, for example, the sign of the curvature scalar is uniformly
negative for the Bose gas. In addition, the curvature R decreases from
zero to negative infinity in the condensation region, thus indicating
that bosons are less stable.50 Nevertheless, the sign of the curvature
R for the Fermi gas revealed to be uniformly positive. This indi-
cates that fermions are more stable than bosons. The conclusions
that regard the signs of R, surprisingly, are in agreement with the
Pauli principle.16,17,49 In the light of the foregoing, we may write that
stable systems have positive R, while unstable systems must exhibit
negative R.

However, we must recognize that R is a quantity that describes
the local stability of thermodynamic systems because the computa-
tion of the curvature reveals whether a phase is in local maximum or
minimum in the neighborhood of critical points, given the fact that
R may be uniformly positive or negative depending on values of the
parameters.9,10 Hence, a necessary and sufficient condition to ensure
the global thermodynamic stability, following probability consider-
ations, is determined by verifying the well-known requirements of
the Sylvester criterion,9,10,12–15,51 in which

11 = G11 > 0,

12 =
∣

∣

∣

∣

G11 G12

G21 G22

∣

∣

∣

∣

> 0, (37)

13 =

∣

∣

∣

∣

∣

∣

G11 G12 G13

G21 G22 G23

G31 G23 G33

∣

∣

∣

∣

∣

∣

> 0.

If all the principal minors of the metric tensor are positive
definite, that is to say, the determinants 1i > 0, then the thermo-
dynamic metric elements Gαµ constitute a positive definite matrix.
Hence, we may conclude that the system is globally stable, regard-
less of the sign of R. Finally, we note that 13 is neglected in
two-dimensional geometries.

Based on the above, the question naturally posed is whether
such notions of stability could be extended for our geometric for-
mulation of dynamical systems.
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In order to describe the interpretation of stability for our
approach from the standpoint of Riemannian geometry, we examine
the relationship between the stability criteria of dynamical systems
and the result expressed by Eq. (36) that relates the curvature R
derived above.

In general, there are different definitions of stability in nonlin-
ear sciences.52–57 Considering the purposes of the present paper, for
simplicity, we may restrict ourselves to the stability of equilibrium
states and the structural stability, that is, the stability of dynamical
systems described by differential equations.

The stability of an equilibrium relies on the study of the behav-
ior of the equilibrium solutions to differential equations due to a
perturbation of their initial conditions.52,53 This comprehension of
stability may also be understood from the viewpoint of the CBT.
More precisely, the stability interpretation of an equilibrium state
is given by the analysis of the sign of the second derivatives of the
potential U(s; m) or the first derivatives of the normal form 8(s; m)
nearby the critical equilibrium states of autonomous dynamical
systems.4,7

We should remark that, in principle, for a stable critical equi-
librium state, one may address stability considerations for the sys-
tem under study, i.e., we may write that a dynamical system is
stable if one could prove the existence of the well-known Lya-
punov functions.52,58 The theoretical formulation of these functions
is essentially based on a generalization of the idea of the total energy
of a given physical system. Nevertheless, the construction of these
functions is not usually a simple task. In fact, the lack of robust meth-
ods for generating Lyapunov functions imposes several difficulties
and practical problems on the study of the stability of dynamic
systems through this method.31,52

On the other hand, structural stability is associated with the
conservation of the topology of the phase portraits when the sys-
tem’s differential equations are perturbed through the variation of
control parameters.52–57 In other words, a system is structurally sta-
ble if the resulting flow is topologically equivalent to the initial one
for a sufficiently small perturbation of the control parameters of the
differential equations that describe this system.

In addition, it should be remarked, parenthetically, that we may
also understand structural stability in a local sense. According to
Hazewinkel,54 one may define the concept of local structural sta-
bility as the preservation of all topological properties of the system
in some neighborhood of an equilibrium state, s∗, of a continuous-
time dynamical system under any sufficiently small perturbation of
the system. That is to say, local structural stability denotes a prop-
erty not of the equilibrium s∗ itself but of the system considered in a
neighborhood of the state s∗.

Having introduced the different notions of stability, we shall
now present the relation between the concepts of bifurcations, struc-
tural stability, and the curvature scalar. Based on the above, if one
varies the control parameter of the system, for example, m, nearby a
critical value, mC, thereby imposing a qualitative change in the phase
portrait, then we may write that the system is no longer structurally
stable but structurally unstable. More precisely, we may write that
this topological change is called bifurcation. Furthermore, the bifur-
cation point (s∗C, mC) is the one in which the qualitative modification
of the phase portrait takes place and leads to the loss of system’s
structural stability.

Thus, we conclude that bifurcations are, of course, intimately
tied to the concept of structural stability of dynamical systems. Based
on the above, let us now return to the result expressed by Eq. (36),
which directly implies the remarkable condition for the occurrence
of bifurcations.

As we have demonstrated, Eq. (36) basically teaches us that the
curvature R should diverge at the singularities of dynamical systems.
These singularities appear at the bifurcation points. On account of
the interpretation of Eq. (36) and the stability definitions presented
above, we may write that if the curvature R diverges at the bifur-
cation point of dynamical systems and bifurcations are tied to the
loss of the structural stability of a system, then we can conclude that
the curvature may be interpreted as a new higher-order measure of
stability of dynamical systems.

Nevertheless, in the framework of Riemannian geometry,16,45

we must recognize that the curvature scalar is a local measure of sta-
bility since the computation of the curvature R only reveals whether
a phase is in local maximum or minimum in the neighborhood
of critical points of physical systems, given the fact that R may be
uniformly positive or negative depending on values of the control
parameters.

Hence, in analogy with the interpretation of R in the framework
of Riemannian geometry16,45 along with the concept of local struc-
tural stability,54 we understand that the curvature scalar is a measure
of the local structural stability of dynamical systems because the cur-
vature R reveals itself as a measure of the stability properties of a
dynamical system in the vicinity of the critical values of equilibrium
states.52,54 Furthermore, we may expect a positive curvature R for
local structural stable systems. On the other hand, locally structural
unstable systems must exhibit negative R.

Nonetheless, we must emphasize that R is a local measure of
stability. Therefore, with the aim of determining global statements
in mind, we shall now turn to the interpretation of global stability in
the framework of Riemannian geometry.

In analogy with the treatment of statistical mechanics, one may
see that Eqs. (30)–(33) satisfy the necessary and sufficient conditions
of the Sylvester criterion, Eq. (37). Consequently, we may write that
the dynamical systems described by the differential equation Eq. (1)
are globally stable, regardless of the possible signs of R.

However, we must remark, further, that this global stability
through the viewpoint of the Sylvester criterion should be inter-
preted in the sense of the structural stability of the system, that is, the
stability as a whole, because the violation of the Sylvester criterion is
a necessary condition for the dynamical system, Eq. (1), reaches the
bifurcation point, and becomes structurally unstable.52,55–57 Alterna-
tively, we may then write that the verification of the conditions of
the Sylvester criterion is necessary for a dynamical system to exhibit
structural stability.

To conclude, we have, so far, developed and extended many
features of the Fisher information geometry to investigate bifur-
cations of dynamical systems expressed by differential equations.
As a result, we have obtained an intriguing quantity named Ricci
curvature scalar, henceforth denoted by R, which reveals itself as a
function of the derivatives of8.

From the standpoint of Riemannian geometry, we have also
obtained new interpretations of the concept of stability. In partic-
ular, we have concluded that the curvature R presents itself as a new
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local measure of the structural stability for the dynamical systems in
the framework of differential equations. Consequently, we may pre-
dict that the curvature should be positive for locally structural stable
systems. Finally, it should be remarked that the positive defined
metric of the dynamical system, Eq. (1), satisfies the sufficient and
necessary conditions to ensure global stability in the structural sense.

III. GENERALIZATION TO TWO-DIMENSIONAL

SYSTEMS

The entire development of the above sections remained
restricted to the realm of bifurcations in the framework of dynam-
ical systems of a single differential equation. Such consideration is
not a restriction but, rather, can be extended at will. In the present
article, however, we also aim at dynamic systems in two dimen-
sions, while the proper application of our geometric methods to
the N-dimensional case will be postponed to the second article
of this series, in which limit cycles and Hopf bifurcations will be
investigated in details.

The program of the generalization to be presented relies on the
construction of the Riemannian metrical structure of the param-
eter space of two-dimensional systems. Our attention here is to
apply the geometric methods of information geometry to investigate
homoclinic bifurcations.

Therefore, we organize this section as follows. We shall first
present a revised account of the developments in Sec. II regard-
ing the derivation of the probability density function of one-
dimensional systems. Second, we extend the original formulation for
a system of differential equations. Finally, we dedicate ourselves to
the derivation of the Fisher metric and the curvature R.

According to Sec. II A, the nonlinear differential equation that
represents the mathematical model of bifurcations in one spatial
dimension, Eq. (1), leads us to a Gaussian PDF with the aid of the
Fourier characteristic functions.

In order to generalize Eq. (12), we must extend the orig-
inal mathematical model of bifurcations. The model for a two-
dimensional dynamical system is given by











β1 =
ds1

dτ
= 81 (s1, s2) ,

β2 =
ds2

dτ
= 82 (s1, s2) .

(38)

In the present bifurcation model, we employ the following
notation: β1 and β2 are the momenta. The order parameters are s1

and s1. τ is the time.81 and82 are non-linear functions, in which it
is understood that both may show dependence on one or more vary-
ing control parameters. Finally, we note that 81 = 82 = 0 assigns
the equilibrium states

(

s∗1 , s∗2
)

of the order parameters. Furthermore,
we should remark that the present two-dimensional mathematical
model of bifurcations, Eq. (38), is advantageous as it also describes
the general form of the two-dimensional systems in non-linear
dynamics.4,6

For the model of bifurcations outlined above, the Dirac delta
probability function in two dimensions is now realized by

ρ (β1,β2) = δ (β1 −81(s1, s2), β2 −82(s1, s2)) (39)

or simply

ρ (β1,β2) = δT (β1 −81(s1, s2)) δT (β2 −82(s1, s2)) , (40)

which may also be reduced in the following well-known Gaussian
representation,59–61

ρ (β1,β2) =
(

T

π

)

e−T
[

(β1−81)
2+(β2−82)

2
]

. (41)

The probability density of Eq. (40) follows the same procedure
used in the derivation of Eq. (12).

One should observe that the latter equation is consistent only
when T → ∞. In agreement with the developments contained in
Sec. II, for bifurcations may be seen as the temporal version of phase
transitions in two-dimensional systems, we must understand T as a
limiting case to what is expected to be a correct approximation to
the solutions to Eq. (38) at long but finite times. Based on the above,
we now proceed to the construction of the Riemannian metric and
curvature scalar.

To introduce the Riemannian metrical structure into the space
of parameters of two-dimensional systems, Eq. (38), let us con-
sider � as a family of probability distributions. Here, � is smoothly
parametrized by three real parameters,62 in which

� =
{

PX =
ρ(β1,β2; X)

T
; T ∈ R

+; X ∈ R
3

}

, (42)

where the statistical model � carries the structure of a Rie-
mannian manifold M of variables β1 and β2. In this model,
X =

(

X1, X2, X3
)

= (s1, s2, m) plays the role of coordinates of a
point PX ∈ �. Here, the metric is defined by the Fisher matrix
H = (Gαµ(X)).

Following the procedure used in the derivation of the com-
ponents of the metric tensor Gαµ for one-dimensional systems,
presented in Sec. II B, we find that

Gαα =
(

T

π

) ∫ +∞

−∞

∫ +∞

−∞
dβ1dβ2 Aαe

−T
[

(β1−81)
2+(β2−82)

2
]

, (43)

where

Aα = Aα (β1,β2) =
[

2

(

∂81

∂Xα

)2

− 2 (β1 −81)

(

∂281

∂ (Xα)2

)

+ 2

(

∂82

∂Xα

)2

− 2 (β2 −82)

(

∂282

∂ (Xα)2

) ]

.

For the off-diagonal components, we have

Gα µ =
∫ +∞

−∞

∫ +∞

−∞
dβ1dβ2 Bαµe−T

[

(β1−81)
2+(β2−82)

2
]

, (44)

whence

Bα µ = Bα µ(β1,β2) =
4T2

π

[

(β1 −81)
2

(

∂81

∂Xα

) (

∂81

Xµ

)

+ (β2 −82)
2

(

∂82

∂Xα

) (

∂82

∂Xµ

)

+ (β1 −81)(β2 −82)

×
( (

∂81

∂Xα

) (

∂82

∂Xµ

)

+
(

∂81

∂Xµ

)(

∂82

∂Xα

) )]

.
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In Eqs. (43) and (44), both indices α and µ range over the inte-
gers 1, 2, and 3, where α 6= µ. Here, X1 = s1, X2 = s2, and X3 = m.
We must remark that the limit T → ∞ is understood in Eqs. (43)
and (44).

On recalling that60,61

(

T

π

) ∫ +∞

−∞

∫ +∞

−∞
dβ1dβ2 ψ(β1,β2)e

−T
[

(β1−81)
2+(β2−82)

2
]

= ψ(81,82),

in which the limit T → ∞ is understood, the solutions to Eqs. (43)
and (44) have the form

Gα α = 2

[

(

∂81

∂Xα

)2

+
(

∂82

∂Xα

)2
]

, (45)

Gα µ = Gµα = 0. (46)

Thus, we may conclude, without further calculation, that
two-dimensional systems have a positive definite Fisher matrix
H = Gαµ(X), given the fact that it is a diagonal square matrix, in
which the components are the squared first-order derivatives of
the normal forms 8i. Furthermore, one can readily see that metric
elements show themselves independent of β1 and β2.

We must observe, finally, that the matrix H yields the following
second fundamental form:32,43

d`2 = G11(ds1)
2 + G22(ds2)

2 + G33(dm2), (47)

whence d` denotes the local quadratic distance in the parameter
space. With our aim of investigating global bifurcations in mind, we
cannot define this metric in the neighborhood of a reference state.
Otherwise, the Riemannian metric would lead us into a null curva-
ture R. This retrieves no information about the dynamical system
under study.63

From the derivation of the Fisher metric, which describes a
proper distance in the parameter space of dynamical systems, we
shall now proceed to the calculation of the Riemannian curvature
scalar.

The metric of Eq. (47) induces a curvature R on the manifold of
the parameter space X. The challenge now is to carry out the deriva-
tion of the curvature R for three-dimensional geometries. In higher
dimensions, we must note, however, that the curvature is no longer
expressed by Eq. (35). Consequently, the general program to write
the curvature scalar is the computation of the Christoffel symbols
and then the fourth-rank curvature tensor. Thus, we shall calculate
R as follows.43

First, one needs to obtain the Christoffel symbols. That is,

0αξ σ =
1

2
Gµα

(

Gµ ξ , σ + Gµσ , ξ − Gξ σ ,µ

)

, (48)

in which the comma notation denotes partial differentiation to the
parameters s1, s2, and m.

Based on the above, we calculate the curvature tensor by
employing

Rαξ σ l = 0αξ σ , l − 0αξ l, σ + 0
µ

ξ σ0
α
µ l − 0

µ

ξ l0
α
µσ . (49)

Finally, the Riemannian curvature scalar is

R = GµνRϑµϑν . (50)

We may observe that the derivation of curvature R in the
parameter space of two-dimensional dynamic systems involves non-
trivial algebraic computations because the parameter space is a
tridimensional geometry.64

To conclude, we have extended the Fisher information geome-
try to investigate bifurcations of two-dimensional systems expressed
by differential equations. The present generalization is in agree-
ment with the standpoint of the Fisher information on higher
geometries.9,14,15

In Sec. IV, we shall apply and illustrate our proper formulation
derived here to study the curvature R and the Riemannian metric for
a few examples of bifurcations.

IV. RESULTS I

In this section, we shall apply the results of our method to study
the behavior, stability conditions, curvature R, and the character of
the transitions of four contrasting cases of local bifurcations, accord-
ing to the theory developed in Sec. II. The procedure that will be
employed in Secs. IV A–IV C is analogous to that considered by
Janyszek to investigate magnetic models.16,17 Thus, we may organize
this section as follows. First, we introduce the bifurcation model and
its respective normal form.

Second, we aim at stability conditions. Therefore, we first
obtain the Fisher metric tensor by computing the derivatives of 8.
As discussed earlier, it should be remarked that the Riemannian
metric is defined with respect to the reference state s∗. Therefore,
we must recognize that the metric elements Gαµ are evaluated in the
state s = s∗.

Third, global stability is analyzed according to the Sylvester cri-
terion. Our task here is to interpret the local square distance (d`2)
to verify whether or not the determinants 1i are positive definite.
Then, we dedicate ourselves to the local structural stability analysis.
In this latter, we first evaluate the components of the metric tensor at
the equilibrium state of the order parameter. Then, we compute and
interpret the curvature scalar nearby the bifurcation point. Here, we
emphasize that the analysis of curvature scalar and the Sylvester cri-
terion defines the structural stability criteria of a dynamical system
in the framework of Riemannian geometry.

Finally, we interpret the diagrams of the curvature R with
interest in the character of its divergence. We must note that the
divergence of R may reveal different transitions.65,66 The first type of
transition is evident when the singularities of the curvature R coin-
cide with the singularities of dynamical systems. These singularities
appear at the bifurcation points. Such behavior denotes a transition
of type I, which may be seen as a second-order transition in respect
to the Ehrenfest classification scheme.41,67

On the other hand, if the curvature R changes its sign and
diverges in the neighborhood of the bifurcation point, then one has
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a transition of type II, which may be interpreted as a first-order
transition in the context of the Ehrenfest classification.

A. Saddle-node bifurcation

The saddle-node bifurcation describes a mechanism for the
disappearance or appearance of equilibrium states.5,7,68 In general,
smooth transitions are governed by saddle-node bifurcations, whose
presence is remarkable in the study of biological models, for exam-
ple, the food-chain mathematical models, host–parasite theoretical
prototypes, and laboratory experiments.69–72

In nonlinear dynamics, the equation

β =
ds

dτ
= 8(s; m) = m − s2 (51)

represents the mathematical model of saddle-node bifurcations.4,7

One may realize that 8(s; m) = 0 when s∗ = ±
√

m, where s∗ is the
equilibrium state of the order parameter. Here, we must emphasize
that s∗ is not a constant, as it shows dependence on the control
parameter m. Figure 1(a) shows the saddle-node bifurcation dia-
gram. From Eq. (51), we infer that s∗ = 0 is the bifurcation point
in the limit of m → mC = 0. From the CBT,5,7,68,73 we may also
conclude that the equilibrium state s∗ can be stable or unstable
depending on the value of the control parameter, as shown in
Fig. 1(a).

Nevertheless, this conventional stability interpretation, which
arises from the CBT, presents limitations since it is only local. For
a critical equilibrium state, we could extract possible conclusions on
the stability of the system if we could prove the existence of the Lya-
punov functions for Eq. (51). However, the construction of these
functions is an arduous task and imposes practical difficulties.31,52

Hence, in order to obtain a complete characterization, one would
be asked to supplement this local analysis through approximate
techniques or numerical simulations.

Nonetheless, we shall show that it is possible to obtain
global and local properties of the mathematical model right

above by employing our formulation of information geometry. By
Eqs. (30)–(34) and (51), we have

d`2 = 8m(ds)2 + 2(dm)2, (52)

which describes an invariant positive definite metric. As discussed
earlier, we should note that the metric above is defined with respect
to the reference equilibrium state s∗. Therefore, we must recognize
that the metric elements Gαµ are evaluated in the state s = s∗.

In order for the system, Eq. (51), to exhibit global stability in
the structural sense, the necessary and sufficient conditions of the
Sylvester criterion, Eq. (37), are

11 = 8m > 0,

12 =
∣

∣

∣

∣

8m 0
0 2

∣

∣

∣

∣

> 0.
(53)

We must observe that m should be positive because m < 0
would lead to imaginary equilibrium values, otherwise. Therefore,
one may conclude that11 and12 are never negative in the physical
regime. Hence, we may write that our system is globally stable with-
out the necessity of complicated global techniques or even numerical
calculations.

Having discussed the global stability analysis, we now turn to
local structural stability analysis through the interpretation of the
curvature R. By Eq. (35), we have

R = −
1

4m2
. (54)

The Fisher metric gives us an expression for R as a function of
the derivatives of8(s; m). We now focus on the analysis of the graph
and the sign of R. In Fig. 1(b), one can readily see that R is a negative
function. Furthermore, it is a symmetric function of m. Therefore,
R is independent of the orientation of m, i.e., R(−m) = R(m). The
graph of R has no m intercepts. We should note that m2 = 0 when
the system approaches the bifurcation point. As a consequence of
that, the R-axis is the only vertical asymptote. On account of the fact

FIG. 1. (a) Shows the saddle-node bifurcation diagram, in which it is possible to observe the dependence of s∗ onm. From the CBT, solid lines represent stability (Weinberg’s
sign convention assumed). Dashed lines refer to instability. We note that s∗ = 0 describes the bifurcation point in the limit of m → mC = 0. (b) shows R as a function
of m. In (b), the dashed line represents structural instability. As one may see, the curvature R is a real and a negative function of m everywhere in the real domain. So,
R(−m) = R(m). As a consequence of that, the function is even and the graph has R-axis symmetry. R is independent of the orientation of m. Here, R is interpreted as a
measure of the local structural stability of the system under study. We may observe that R diverges as m−2 for m > mC. In addition, we note that limm→0− R = −∞ and
limm→0+ R = −∞ for the system approaching mC. Consequently, the R-diagram indicates that if R is large, then the system is less locally structural stable.
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that the degree of the denominator is greater than the degree of the
numerator, the m-axis is the horizontal asymptote.

Another remark concerns the local stability interpretation and
the divergence of R. First, R is uniformly negative and decreases
throughout the domain. Hence, we may write that the system
is locally structural unstable. One may see from Fig. 1(b) that
R → −∞ in the neighborhood of (s∗C, mC), that is to say, the singular
point of R is coincident with the singularity of the dynamical system
of Eq. (51). Here, the singularity appears at the bifurcation point. So,
we may conclude that the system has a phase transition of type I.
This latter is an important result since it teaches us that saddle-node
bifurcations represent smooth transitions in the parameter space.

The interpretations derived above are in good agreement with
the standpoint of view of previous works.16,17,65,66

B. Transcritical bifurcation

In general, transcritical bifurcations mark standard mathemat-
ical models with the exchange of stability in nonlinear sciences.7,73

There are vast applications of the concept of transcritical bifurca-
tions, e.g., lasers, population dynamics, and many others.5,7,31 As a
worked example, the equation

β =
ds

dτ
= 8(s; m) = ms − s2, (55)

describes the normal form of transcritical bifurcations, in which
8(s; m) = 0, when s∗0 = 0 and s∗1 ≡ s∗ = m. From the CBT,5,7,68,73

we may conclude that s∗0 is unstable when m < 0. Alternatively, s∗0
becomes stable when m > 0 (sign convention assumed).

Conversely, s∗ is unstable for m > 0. On the other hand, s∗

becomes stable for m > 0. Furthermore, we may note that s∗ = 0
in the limit of m → mC = 0. This denotes the bifurcation point.
Figure 2(a) shows the behavior of the transcritical bifurcation. As

one may observe, there is a remarkable exchange of stability nearby
the critical region.

Nevertheless, the stability interpretation outlined above is, in
some respect, incomplete because it is essentially a local analysis.
With our aim of deriving a complete characterization of the system,
we now turn to our approach to investigate bifurcations from the
standpoint of information geometry.

One should note that Eq. (55) has two different equilibrium
states. Therefore, we must perform separate analyses. For this pur-
pose, we first dedicate ourselves to s∗ and then we explore s∗0 .

According to the general rules developed in Sec. II, we obtain

d`2 = 2m2(ds)2 + 2m2(dm)2, (56)

in which the components of the metric tensor are evaluated in the
state s = s∗.

The necessary and sufficient conditions of the Sylvester crite-
rion are

11 = G11 > 0,

12 =
∣

∣

∣

∣

G11 0
0 G22

∣

∣

∣

∣

> 0.
(57)

Direct calculation shows

11 = 2m2, 12 = 4m4. (58)

Despite the character of the control parameter m, we see that
11 and12 are never negative in the physical regime. Consequently,
one may conclude that our system presents global stability in the
structural sense.

Having discussed the global analysis, we now dedicate ourselves
to the local geometric analysis through the curvature R. By Eq. (35),

FIG. 2. (a) Shows the diagram of the transcritical bifurcation of Eq. (55). In addition, (a) qualitatively depicts the dependence of the equilibrium state on the control parameter
m. Solid lines represent stability, while dashed lines refer to instability (Weinberg’s sign convention assumed). We note that s∗ = 0 in limit of m → mC = 0. This is the
bifurcation point, in which there is a remarkable exchange of stability. On the other hand, (b) shows R as a function of m. Here, dashed lines represent structural instability.
One can readily see that R is a negative symmetric function ofm. The graph has nom intercepts. Here,m4 = 0, whenm → mC. As a consequence of this fact, we conclude
that the R-axis is the only vertical asymptote. We may observe that the degree of the denominator is greater than the degree of the numerator. Hence, the m-axis is the
horizontal asymptote. One may note that limm→0− R = −∞ and limm→0+ R = −∞ when the system approaches mC. Thus, the divergence of R marks the occurrence of
transcritical bifurcations nearby the critical region. R is a measure of stability. Since R diverges asm−4 form > mC, then one can conclude that the system is locally structural
unstable.
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we find

R = −
1

m4
. (59)

From the Fisher metric, we receive an expression for R as a
function of the derivatives of 8(s; m). We now focus on the graph
and sign of R. Figure 2(b) shows the behavior of R on m. Anal-
ogously to the saddle-node bifurcation, we observe that R(−m)
= R(m). That is to say, R is independent of the orientation of m.
We may also note that the R function is even. In addition, the graph
of the curvature has R-axis symmetry. Another remark concerns the
local structural stability and the divergence of R. First, the curvature
scalar is uniformly negative and decreases throughout the domain.
So, we may write that the system is locally structural unstable. This
result agrees with the viewpoint of the previous works.16,17,65,66 Sec-
ond, we can see that the singular point of R is coincident with the
singularity of the dynamical system, Eq. (55), as shown in Fig. 2(b).
In the light of the foregoing, we may then conclude that the system
has a transition of type I, i.e., a second-order phase transition.

We close this section by investigating the stability in the neigh-
borhood of the equilibrium state s∗0 . In this state, Eq. (34) yields

d`2 = G11(ds)2 + G22(dm)2, (60)

where

G11 = 2

(

∂8(s; m)

∂s

)2

(s∗0 ,m)

= 2m2, (61)

G22 = 2

(

∂8(s; m)

∂m

)2

(s∗0 ,m)

= 0. (62)

Nevertheless, it is not difficult to realize that the metric of
Eq. (60) degenerates. This enables us to conclude that the trivial
solution s∗0 is a purely mathematical equilibrium state without a
necessarily physical interpretation. So, we cannot address stability
considerations for s∗0 from our approach.

C. Pitchfork bifurcations

The normal form of pitchfork bifurcations, sometimes called
forward, marks a broad range of symmetry-breaking models in non-
linear sciences. Applications of this bifurcation include, for example,
sports,74 statistical magnetic models,75,76 neural oscillations,77,78 and
others.30,31,79 The equation

β =
ds

dτ
= 8(s; m) = ms − γ s3, (63)

represents the mathematical models of pitchfork bifurcations. How-
ever, we should recognize that Eq. (63) encompasses two contrasting
bifurcations cases: supercritical, when γ = 1, and subcritical, when
γ = −1. From Eq. (63), we realize that s∗ = ± (m/γ )1/2 is the non-
trivial equilibrium state of the order parameter. From the CBT5,7,68,73

and Weinberg’s sign convention, one may conclude that the equilib-
rium state s∗ is locally unstable in the supercritical case. On the other
hand, s∗ is locally stable in the subcritical case (γ = −1).

We should recognize, further, that s∗ = 0 in the limit of
m → mC = 0. This denotes the bifurcation point. Figure 3 shows
the behavior of pitchfork bifurcations in both configurations. In
Fig. 3, we may observe a remarkable symmetry-breaking in the
neighborhood of the critical regime.

Having discussed the conventional bifurcation analysis, we
now seek to investigate pitchfork bifurcations from the standpoint
of our formulation. By Eqs. (30)–(34) and (63), we have

d`2 = 8m2(ds)2 +
2m

γ
(dm)2, (64)

which describes an invariant positive definite metric. Furthermore,
we should note that the components of the metric tensor are evalu-
ated in the state s = s∗.

Global stability requires

11 = G11 > 0,

12 =
∣

∣

∣

∣

G11 0
0 G22

∣

∣

∣

∣

> 0.
(65)

FIG. 3. It presents two contrasting diagrams of pitchfork bifurcations. (a) depicts the behavior of the supercritical pitchfork bifurcation (γ = 1), while the subcritical pitchfork
(γ = −1) is shown in (b). The bifurcation diagrams also qualitatively show the dependence of the equilibrium state on the control parameter m. From the CBT, solid lines
represent stability, while dashed lines refer to instability (sign convention assumed). We may note for both cases that ifm → mC = 0, then s∗ = 0, which marks the intriguing
symmetry-breaking phenomena.
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Direct calculation shows

11 = 8m2, 12 =
16m3

γ
. (66)

Based on the above, it is not difficult to see that 11 is always
positive in the physical regime. However, we must recognize that
the determinant 12 may have different regimes due to the control
parameter. Also important is the dependence of12 on the factor γ .
Thus, we need interpret both cases separately. In the supercritical
configuration (γ = 1), one can readily see that 12 is positive in the
region 0 < m < +∞. Consequently, we may conclude that there is a
physical regime in which11 and12 are indeed positive. This reveals
that the system may exhibit global stability in the structural sense.

In the subcritical configuration (γ = −1), however, we con-
clude that the system has both 11 and 12 positive and global
stability in the region −∞ < m < 0.

Having discussed the conditions to assure global stability in the
structural sense, we now study the divergence and local stability of
the curvature R. By Eq. (35), we have

R = −
γ

2m3
. (67)

Owing to the fact that the curvature scalar R has been deter-
mined, we shall investigate its dependence on the control parameter.

The R-diagrams of pitchfork bifurcations are plotted in Fig. 4.
Figure 4(a) shows the stability behavior for supercritical bifurca-
tion (γ = 1). Here, we may observe that R > 0 when m < 0. In the
region −∞ < m < 0, the R function is positive (stable). So, we can
conclude that there is a gain of stability when the system approaches
the critical point (s∗C, mC).

Conversely, one can readily see that R < 0 when m > 0. Hence,
R is negative (unstable) in the region 0 < m < +∞. This indi-
cates that the system losses structural stability in the neighborhood
of the critical point (s∗C, mC). We must also remark that there is

a discontinuity in R for m > mC. This reflects a first-order phase
transition.41,65,80 Furthermore, such discontinuity disappears at
m = mC = 0, that is, in the region −∞ < m < 0, where R is the
positive (stable). Consequently, this denotes a second-order phase
transition.

The behavior discussed in Fig. 4(a) teaches us that the critical
point (s∗C, mC) occurs at a second-order transition that terminates
a line of first-order transition. In statistical mechanics, the same
behavior is also present in the Curie point of magnets and in the
termination of the vapor–liquid transition in fluid systems.41,81

Having discussed the supercritical case, we now turn our atten-
tion to the behavior of R for the subcritical pitchfork bifurcation
(γ = −1). Figure 4(b) depicts the dependence of R on the control
parameter m. Here, we may observe that there is a discontinu-
ity in R for m < mC. Consequently, the R function is negative
in the region −∞ < m < 0 (unstable). This result reflects a first-
order phase transition. However, the discontinuity disappears in the
region 0 < m < +∞ (stable), in which R is positive (stable). This
indicates a second-order phase transition.41,65,80

Therefore, the analysis of the curvature scalar in Fig. 4 reveals
that pitchfork bifurcations present signatures of two different types
of phase transitions. The first one occurs when the curvature scalar
diverges and shows changes in the sign of R, which denotes a phase
transition of type I. The second one is due to the divergence of R
when the system approaches the critical point, which indicates a
phase transition of type II.

The observations obtained through the R-diagrams for the
pitchfork bifurcations agree with the results of nonlinear studies.
The conclusions here expand the state of the art since one usually
does not see a pitchfork bifurcation as a second-order phase transi-
tions with instances of first-order transitions.74,82–84 We must remark
that we have neglected the investigation of the trivial solution s∗0 = 0
in the analysis of pitchfork bifurcation. Analogously to the result
found for transcritical bifurcation, the trivial solution of pitchfork

FIG. 4. (a) It depicts the dependence of R on m for the supercritical pitchfork bifurcation (γ = 1). We must remark that solid lines represent local structural stability, while
dashed lines refer to local structural instability in the R-diagrams (Weinberg’s sign convention assumed). The curvature R shows two different phase transitions. In the region
−∞ < m < 0, R function is positive (stable), which reflects a phase transition of second order. In the region 0 < m < +∞, R is negative (unstable). Consequently, we
conclude that there is a loss of structural stability when the system approaches the critical point. This produces a first-order phase transition. (b) shows R for the subcritical
pitchfork bifurcation (γ = −1). In contrast to (a), R > 0 when m > 0 and R < 0 when m < 0. Here, we may observe that there is a discontinuity in R for m < mC.
In other words, R is negative (unstable) in the region −∞ < m < 0. This reflects a phase transition of first order. Nevertheless, the discontinuity disappears in the region
0 < m < +∞, in which R is positive (stable). This denotes a second-order phase transition. In both cases, we may observe that R is an odd function as it behaves differently
from positive to negative values of m, i.e., R(−m) = −R(m). One may also note that R diverges proportional to m−3.

Chaos 32, 023119 (2022); doi: 10.1063/5.0069033 32, 023119-12

Published under an exclusive license by AIP Publishing



Chaos ARTICLE scitation.org/journal/cha

bifurcations also leads to a mathematical divergence of the metric.
Hence, we cannot address physical interpretations for this case.

V. RESULTS II

In this section, we shall apply the results of our method to
study the behavior, stability conditions, curvature R, and the char-
acter of the transitions of the homoclinic bifurcations present in the
Duffing-like oscillator.

The procedure employed in this section is analogous to that
considered earlier to study local bifurcations. Hence, we may orga-
nize this section as follows. First, we introduce the Duffing-like
equation that consists of a modified version of the original equation
of the Duffing oscillator. Second, we focus on stability condi-
tions. Here, we first obtain the Fisher metric tensor by computing
the derivatives of the nonlinear functions 8i. The global stabil-
ity is analyzed through the Sylvester criterion. Our task here is
to interpret the local square distance (d`2) to verify whether or
not the determinants 1i are positive definite. Finally, we interpret
the diagrams of the curvature scalar with a special interest in its
divergence.

A. The Duffing oscillator

The model upon which we shall base our considerations is that
of Duffing’s equation, which describes the dynamics of a curious
oscillator composed of a metallic strip and AC electromagnets.31,52,85

The model is to be considered as suggestive only, but it does lead
to a qualitative understanding of the phenomena of homoclinic
bifurcations.52,86

In nonlinear dynamics, the equations











β1 =
ds1

dτ
= 81 (s1, s2) = s2

β2 =
ds2

dτ
= 82 (s1, s2) = s1 − s3

1 + ε
(

m s2 + s2
1s2

)

(68)

represent the modified mathematical model of the Duffing oscilla-
tor, where m is the control parameter and ε is a fixed perturbation
parameter. Thus, we may write that the Duffing equation outlined
above has only three varying parameters: s1, s2, and m. We should
note that the present model presents a global homoclinic bifurca-
tion when the perturbation ε of Eq. (68) is zero.52,86 Homoclinic
bifurcations,87 however, cannot be detected by the CBT. Conse-
quently, the study of this particular class of bifurcations is generally
done through approximate methods, e.g., the harmonic balance,
Melnikov’s method, and numerical simulations.52,88

Nevertheless, we shall show that it is possible to study the
phenomena of global bifurcations of the mathematical model right
above by employing our formulation of information geometry.
More specifically, the question that is posed here is whether or not
information geometry might be employed to explore critical aspects

of homoclinic bifurcations. By Eqs. (45)–(47) and (68), we have

d`2 = 2
(

1 − 3s2
1 + 2s1s2ε

)2 (

ds1

)2 +
(

2 + 2ε2
(

s2
1 + m

)2
)

(

ds2

)2

+ 2s2
2ε

2
(

dm
)2

,

which denotes an invariant positive definite metric. With our aim
of investigating global bifurcations in mind, we cannot define the
metric in the neighborhood of a reference state. Otherwise, the
Riemannian metric would yield us a null curvature R.

For the present mathematical model, global stability requires

11 = G11 > 0,

12 =
∣

∣

∣

∣

G11 0
0 G22

∣

∣

∣

∣

> 0, (69)

13 =

∣

∣

∣

∣

∣

∣

G11 0 0
0 G22 0
0 0 G33

∣

∣

∣

∣

∣

∣

> 0.

Direct calculation shows

11 = 2
(

1 − 3s2
1 + 2s1s2ε

)2
, (70)

12 =
(

2 + 2ε2
(

s2
1 + m

)2
) (

2
(

1 − 3s2
1 + 2s1s2ε

)2
)

, (71)

13 =
(

2s2
2ε

2
)

(

2 + 2ε2
(

s2
1 + m

)2
)

(72)

×
(

2
(

1 − 3s2
1 + 2s1s2ε

)2
)

, (73)

whence we observe that 11, 12, and 13 are never negative in the
physical regime. Based on the above, we can write that the dynami-
cal system, Eq. (68), satisfies the conditions of the Sylvester criterion.
This allows us to conclude that the perturbed Duffing oscillator
presents global stability in the structural sense.

However, it is important to recognize that the unperturbed
Duffing equation violates the inequality of Eq. (72), since 13 = 0
for ε = 0. This reveals an important finding in the understanding
of homoclinic bifurcations in the framework of structural stability.
The result found above enables us to conclude that the unperturbed
oscillator does not present global stability. This is in agreement with
Peixoto’s theorem,52,57 which establishes that homoclinic and het-
eroclinic bifurcations are both structurally unstable, based on the
analysis of their phase portraits.

To conclude, we close this section by remarking that our
geometric formulation shows an alternative approach to investi-
gate instances of structural stability for global bifurcations without
considering approximate methods or numerical solutions.

Having discussed the global analysis of stability in the structural
sense, we now dedicate ourselves to the study of the curvature R. By
Eqs. (48) and (49), we find

R =

(

1−3s2
1 +2s1s2ε

) (

1+s1

(

4s2ε+s1

(

−6+9s2
1 −12s1s2ε+8s2

2ε
2
)))

+2s2ε
(

1+ε2
(

s2
1 +m

)2
)

(

s1 +9s5
1 −9s4

1s2ε+s3
1

(

−6+4s2
2ε

2
)

+s2mε+s2
1s2ε (5+εm)

)

(

s2
2

(

1 − 3s2
1 + 2s1s2ε

)3
(

1 + ε2
(

s2
1 + m

)2
)2

) .

(74)
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The Fisher metric leads us to an expression for the curvature
scalar in terms of the derivatives of 8i. From the knowledge of R,
we shall study its divergent behavior and the character of the transi-
tions associated with the homoclinic bifurcations. Nevertheless, we
must recognize that Eq. (68) behaves differently depending on the
character of the perturbation ε. That is, the Duffing oscillator may
assume two configurations: unperturbed, when ε = 0; perturbed,
when ε ≥ 1. Hence, we must interpret both cases separately.

Figure 5 depicts the behavior of R for the unperturbed config-
uration (ε = 0). One can readily see that evaluations with Eq. (74)
show that the curvature is uniformly positive and increases through-
out the domain. Consequently, we infer that local structural stability
is predominant in the physical regime.

Another remark concerning the behavior of the unperturbed
oscillator is the divergence of R and its connection with bifurcations.
As we have already proved, R diverges at singularities of dynamical
systems, which appear at the bifurcation points.

In Fig. 5, one can readily see that R diverges in the neighbor-
hood of the origin. To find the bifurcation point, the denominator
of the curvature R should be zero. Therefore, it is not difficult to
verify that R→ ∞, when

(

s2
2

(

1 − 3s2
1 + 2s1s2ε

)3
(

1 + ε2
(

s2
1 + m

)2
)2

)

= 0, (75)

in which it becomes evident that R diverges to positive infinity at

the state
(

s∗1 , s∗2 , m∗) =
(

±1/
√

3, 0, −1/3
)

. The procedure adopted
above to find singular points of R is not a new idea here. This
approach had already been considered to study critical aspects

FIG. 5. It shows the behavior of the curvature R as a function of s1 and s2

for (s1, s2,m) variations in the unperturbed configuration of Duffing’s oscilla-
tor (ε = 0). One should note that the red color represents stability, while the
blue color refers to instability. Evaluations with Eq. (74) show that R diverges at
(

s
∗
1 , s

∗
2 ,m

∗) =
(

±1/
√
3, 0,−1/3

)

. R is real and positive in the physical regime.

This enables us to conclude that Duffing’s oscillator has a gain of local struc-
tural stability when the system approaches the critical point. Analogously to the
saddle-node and transcritical cases, the system has a transition of type I.

of the Kagome Ising model in the framework of thermodynamic
geometry.89

However, we should emphasize that when ε = 0, the dynami-
cal system, Eq. (68), exhibits a homoclinic bifurcation in the phase
portrait.52,86 Consequently, this remarkable fact teach us that the
divergence behavior of R marks the phenomenon of the homo-

clinic bifurcation, where
(

s∗1 , s∗2 , m∗) =
(

±1/
√

3, 0, −1/3
)

represents
its bifurcation point.

In addition, this result shows that homoclinic bifurcations rep-
resent smooth transitions of type I in the parameter space when
ε = 0. The observations obtained through the R-diagrams for the
homoclinic bifurcation agree very well with the results of nonlinear
studies obtained through approximate global methods.52,86 Further-
more, this shows a clear evidence in favor of the validity of our
approach.

Having discussed the unperturbed configuration of the Duffing
oscillator, we now dedicate ourselves to the study of the curvature R
when the perturbation is large, that is to say, ε ≥ 1.

The R-diagram of the perturbed Duffing oscillator is plotted
in Fig. 6, where we may observe that the curvature scalar is a nega-
tive function in the region −∞ < s1 < −1/3. This indicates, locally,
that the system loses structural stability in the neighborhood of the
critical point. Conversely, in the region −1/3 < s1 < +∞, the cur-
vature R is positive. Hence, we may infer that there is a gain of local
structural stability in the physical regime.

One can readily see that R has a discontinuity in the neighbor-

hood of the critical point
(

s∗1 , s∗2 , m∗) =
(

±1/
√

3, 0, −1/3
)

. So, we
may conclude that the R-diagram of the perturbed oscillator has a

FIG. 6. It shows the behavior of the curvature R as a real function of s1 and s2
for (s1, s2,m) variations in the perturbed configuration of Duffing’s oscillator. One
should note that the red color represents stability, while the blue color refers to
instability. For a sufficiently large perturbation (ε ≥ 1), evaluations with Eq. (74)
show that the curvature is regular in the physical regime, except at

(

s
∗
1 , s

∗
2 ,m

∗)

=
(

±1/
√
3, 0,−1/3

)

, where the curvature R diverges. R is mostly positive,

which we infer that local structural stability is predominant. The curvature R
presents signatures of phase transitions of types I and II.
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phase transition of type II that terminates at an isolated bifurca-
tion point of a phase transition of type I. This particular type of
phase transition has also been observed in the study of the critical
phenomena of nuclear structures.90

Therefore, these analyses reveal two different types of phase
transitions for homoclinic bifurcations. For the unperturbed con-
figuration (ε = 0), the Duffing oscillator presents a divergence of
R. This denotes a phase transition of type I. On the other hand,
for the perturbed configuration (ε 6= 0), the curvature R changes
its sign and diverges in the neighborhood of the state

(

s∗1 , s∗2 , m∗)

=
(

±1/
√

3, 0, −1/3
)

. This reflects a phase transition of type II.
To conclude, in the foregoing, we have, so far, extended our

original geometric approach to investigate a non-trivial bifurcation
in the context of the CBT. More precisely, we have studied the
behavior, stability conditions, and the characterization of homo-
clinic bifurcations in a modified version of the Duffing oscillator.

VI. CONCLUSIONS

In this work, we aimed to overcome some of the limitations of
the CBT by adding the geometric methods of information geometry.
A general approach for local and global bifurcations is challenging.
Consequently, the addition of information methods may be seen as
a new hope when the standard bifurcation methods show little or no
solution.

By following this premise, we have extended many features of
the information geometry to investigate bifurcations in the context
of dynamical systems. More precisely, we investigated the behavior,
stability conditions, and the characterization of bifurcations through
the interpretation of the Fisher metric and the curvature R.

In this article, a structural sense of global stability has been
investigated for contrasting bifurcation models. In the study of the
saddle-node and transcritical bifurcations, we have obtained positive
definite metrics, which allowed us to conclude that both models are
globally stable according to the Sylvester criterion. Nevertheless, in
the investigation of pitchfork bifurcations, we have observed differ-
ent conditions of global stability. In the supercritical configuration,
we concluded that the system of Eq. (63) presents global stability
in the region 0 < m < +∞, since both the determinants 11 and
12 are positive in the physical regime. Alternatively, in the subcrit-
ical configuration, we inferred that the system has both 11 and 12

positive and global stability in the region −∞ < m < 0.
In our analyses, a point of interest was the interpretation of

local structural stability through the study of the sign of R. The
saddle-node and transcritical bifurcations have negative curvatures.
Hence, this allows us to conclude that both bifurcations are locally
structural unstable in the neighborhood of the bifurcation point.

Also important is the divergent behavior of R for the saddle-
node and transcritical equations. From our analyses, we found that
these bifurcations have critical point divergences, i.e., R → −∞
nearby the bifurcation point (s∗C, mC). This character of transition
occurs when the singularities of the curvature R coincide with the
singularities of the dynamical systems. As a consequence of that,
we see that the saddle-node and transcritical bifurcations have a
transition of type I.

Nonetheless, this is quite unlike for the pitchfork bifurcations.
In the supercritical pitchfork, the curvature scalar is positive in the

region −∞ < m < 0. Furthermore, R tends to plus infinity at the
critical point. So, we may conclude that there is a gain of local
structural stability. Conversely, in the region 0 < m < +∞, R is
negative and tends to negative infinity. Thus, we infer that the sys-
tems lose structural stability in the neighborhood of the critical
point.

In the subcritical pitchfork, we observed that R > 0 when
m > 0, thus reflecting a gain of local structural stability. On the other
hand, R < 0 when m < 0. Hence, we may write that the system loses
local structural stability in the neighborhood of the critical point.

In addition, the analyses of the R-diagrams revealed signatures
of two different phase transitions for pitchfork bifurcations. The first
transition is observed in virtue of the divergence of R as the system
approaches the critical point. This indicates a transition of type I.
The second transition takes place due to the changes in the sign of
R. Thus, this denotes a phase transition of type II or a first-order
transition according to the Ehrenfest classification.

Finally, as a result of the generalization of our geometric
method, homoclinic bifurcations could be investigated in the frame-
work of information geometry.

Homoclinic bifurcations belong to the class of global bifur-
cations that cannot be investigated through the CBT. In general,
the analysis of homoclinic bifurcations is performed through time-
consuming numerical simulations or approximate global methods.
On account of the fact that the CBT fails to give a complete descrip-
tion of homoclinic bifurcations and the standard nonlinear methods
present limitations, our formulation showed itself as an alternative
viewpoint to investigate this problem.

In the framework of information geometry, we have observed
different conditions for global stability of the Duffing oscillator.
In the perturbed configuration, we conclude that the system satis-
fies the necessary and sufficient conditions to assure global stability
according to the Sylvester criterion. Nevertheless, the unperturbed
Duffing equation violates the inequality of Eq. (72), since 13 = 0
for ε = 0. Hence, we concluded that the unperturbed oscillator does
not present global stability, which agrees with Peixoto’s theorem.
This result represents an important finding in the comprehension
of homoclinic bifurcations because it shows that our geometric for-
mulation gives an alternative way to address stability for global
bifurcations.

Another point of interest is the interpretation of the divergent
behavior of R. In the unperturbed configuration, the curvature R is
uniformly positive and increases throughout the domain, in which R

→ +∞ at the bifurcation point (s∗1 , s∗2) = (±1/
√

3, 0, −1/3). There-
fore, this remarkable fact shows that the homoclinic bifurcations
represent smooth transitions of type I in the parameter space, when
ε → 0.

The analysis of the R-diagram for the perturbed oscillator
showed signatures of two different types of phase transitions. The
first one happens because of the divergence of R when the system
approaches the critical point. This indicates a phase transition of
type I. The second one becomes evident given the fact that R shows
a divergent behavior and changes its sign in the neighborhood of the
bifurcation point. This denotes a phase transition of type II.

A further remark concerning the perturbed Duffing oscillator

relies on the critical point (s∗1 , s∗2) = (±1/
√

3, 0) and its respective
bifurcation value m∗ = mhomoclinic = −1/3. In general, it is not
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possible to analytically determine either the bifurcation points or the
parameter values in which a homoclinic bifurcation occurs. In this
scenario, bifurcation points might be estimated through the Mel-
nikov method. Even though this method is a universal technique to
study global bifurcations, its practical use still has fundamental and
technical difficulties.91 In addition, we should note that the Melnikov
approach can only give a reasonable analysis of the global behavior
when the perturbation is very small or close to zero. For large per-
turbations, however, this method may not help us to understand the
global behaviors of nonlinear systems.91,92

Based on the above, it becomes evident that our formulation
expands the state of the art because the geometric methods derived
here allowed us to analytically locate the bifurcation point and the
parameter value of homoclinic bifurcations.

Nevertheless, we may recognize that the Riemannian met-
rical structure of the parameter space has some peculiarities for
two-dimensional systems. We stress some of them here.

First, the derivation of the curvature R becomes a challenging
task as the computation of the Christoffel symbols, the fourth-rank
curvature tensor, and the curvature scalar R is not straightforward.

Second, if we consider two or one of s1, s2, or m to vary slowly
compared with the others, thereby we may regard one of these as
fixed, then the Fisher geometry might be investigated. Nonetheless,
this possibility would allow us to analyze a particular system in seven
different cases with one, two, or three independent parameters. The
study of Riemannian metrics in an above-outlined manner is not
a new idea here. This has already been considered to investigate
stability and fluctuations in black holes thermodynamics.15

In the light of the foregoing, we may then write that we have
successfully extended the geometrical methods of the information
theory to investigate bifurcations in the framework of nonlinear
dynamics. As a result, we have added a new theoretical possibility
that allowed us to expand the state of the art of five contrasting bifur-
cation models. Also, the results obtained here agree precisely with
those obtained some time ago by other methods and in somewhat
different contexts.

In conclusion, we may write that our approach presents a clear
improvement over the original CBT in essentially four ways. First,
our formulation addresses global and local stability conditions for
dynamical systems described by differential equations. Second, it
encompasses the essential features of CBT. Third, global bifurca-
tions may be investigated without considering approximate methods
or numerical simulations. Finally, information geometry is a new
approach not commonly used in nonlinear dynamics. As a natu-
ral corollary, our formulation provides an alternative way to study
problems where the conventional nonlinear methods may show lim-
itations. The physics presented in this article is, in most part, well
understood, and it is a matter of the application of the techniques
presented here to somewhat novel circumstances in the context of
complex systems.

There are, of course, a few questions that remain open. First,
the connection of the present formulation with the modern the-
ory of critical phenomena, in which it is possible to assign critical
exponents through standard assumptions on generalized homoge-
neous functions. Second, the application of the present geometric
methods to study limit cycles and Hopf bifurcations. The details
of the present theory on the Hopf bifurcations, limit cycles, and

other global bifurcations will be postponed to the next articles of
this series.
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