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Characterizing a transition from limited to unlimited diffusion in energy
for a time-dependent stochastic billiard
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We explore Fermi acceleration in a stochastic oval billiard which shows unlimited to limited diffusion in
energy when passing from the free to the dissipative case. We provide evidence for a transition from limited to
unlimited energy growth taking place while detuning the corresponding restitution coefficient responsible for the
degree of dissipation. A corresponding order parameter is suggested, and its susceptibility is shown to diverge at
the critical point. We show that this order parameter is also be applicable to the periodically driven oval billiard
and discuss the elementary excitation of the controlled diffusion process.
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I. INTRODUCTION

Billiards represent dynamical systems composed of parti-
cles moving inside a closed boundary while colliding with
the latter [1,2]. Generally, the border may assume many ge-
ometrical shapes and can even depend on time. It is well
known that a phenomenon denoted as Fermi acceleration (FA)
is observed for time-dependent boundaries. In the case of
FA, an ensemble of particles acquires, on average, unlimited
energy growth from collisions with the border. The Loskutov-
Ryabov-Akinshin (LRA) conjecture [3,4] states that chaos in
a static billiard is a sufficient condition to observe FA when a
time-dependent perturbation to the boundary is introduced.

Examples of time-dependent billiards exhibiting FA in-
clude the Lorentz gas [5,6], the stadium billiard [7], and the
oval billiard [8]. A well-known example complementing the
LRA conjecture is the elliptical billiard [9]. The static version
of the elliptical billiard is integrable. When a time perturbation
to the boundary is introduced, depending on the initial condi-
tion as well as the control parameters, FA is observed. Due
to the boundary’s time variation, the separatrix present in the
phase space is replaced by a stochastic layer. Therefore, tra-
jectories confined inside the separatrix (librators) can explore
regions outside the separatrix (rotators) and vice versa. These
crossings define a mechanism producing the unlimited energy
growth [9,10]. It has been noticed that FA is not robust under
inelastic collisions [11] since even for the smallest amount
of dissipation, FA is suppressed. For the dissipative billiard,
the appearance of attractors leads the mean velocity to enter a
saturation regime for large enough times, and the energy gain
of the particles becomes limited [12].

The phenomena of Fermi acceleration and its suppression
have also been observed in the context of stochastic billiards

[13,14]. In those systems, the stochasticity can be introduced
through random reflections [15], random oscillations of the
boundary [8], or even by turning dynamical variables into
random variables with fixed in time probability distributions
[16]. The main physical motivations for studying stochastic
billiards come from the need to understand diffusive motion
in porous media [17] and to create models for the exploration
of stochastic processes such as Markov chains [18] and Brow-
nian motion [19]. Moreover, stochastic nonlinear dynamical
systems can be used to model chaotic systems in statistical
physics, regardless of whether or not they are in equilibrium
[20,21].

For many nonlinear systems, some physical observables
obey properties linked to scale invariance that inevitably lead
to scaling laws [22–27], which are commonly related to phase
transitions [28,29]. Although scale invariance and power laws
have been found in many different nonlinear dynamical sys-
tems, little is known about possible related phase transition.
In statistical physics, phase transitions are often related to
changes in the spatial structure of a system caused by the
variation of control parameters [30,31]. Conversely, in dynam-
ical systems, phase transitions are linked to changes in their
phase space structure, also due to changes in the correspond-
ing control parameters [32,33]. Close to a phase transition,
the relevant observables obey a scaling behavior and exhibit
critical exponents that characterize the system’s dynamics.

In this paper, we study a transition from limited to unlim-
ited energy growth (TLUG) in a stochastic oval billiard whose
boundary moves in time. The particle, or in an equivalent
way, an ensemble of noninteracting particles, collides with
the moving boundary. The reflection law considers inelastic
collisions that preserve the tangential momentum but not the
kinetic energy upon collision. We assume only the normal
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component of the velocity to be affected by the dissipation,
which is controlled by a restitution coefficient. The static oval
billiard exhibits a mixed-phase space; therefore, the LRA con-
jecture applies. With an increasing number of collisions, the
growth of the average velocity of the particles is unbounded,
leading to the unlimited diffusion of energy. Dissipation oc-
curs when the restitution coefficient is less than one, and
unbounded energy growth is no longer observed. Hence the
dynamics of the average velocity evolves to a stationary state,
confirming the suppression of the unlimited energy growth.
This suppression of unlimited growth marks the transition
in which we are interested. When the dissipation parameter
approaches one continuously, the average velocity saturation
plateau increases indefinitely. The inverse of the saturation
plateau approaches zero at this transition and, as we shall
see, defines a candidate for an order parameter. At the critical
point, the corresponding susceptibility diverges.

Moreover, we identify the elementary excitation of the
dynamics, which is responsible for the chaotic diffusion in the
phase space. We also discuss the applicability of the employed
method to the time-driven oval billiard.

II. THE MODEL

The main goal of this paper is to characterize a transition
from limited to unlimited energy gain for an ensemble of non-
interacting particles confined within an stochastic oval billiard
whose boundary oscillates in time. The equation of the border
is given by

R(θ, ε, η, t, p) = 1 + ε[1 + η cos(t )] cos(pθ ), (1)

where p is an integer, and ε is a parameter responsible for the
geometrical deformation. For ε = 0, the billiard is a circle.
The control parameter η determines the amplitude of the time
perturbation of the boundary, and the case η = 0 recovers the
static billiard. The dynamics of a particle is specified in terms
of its velocity Vn, the angular position θn, the angle αn that
its trajectory forms with a tangent line at the position of the
collision, and the time of the collision tn as

X (t ) = X (θn, tn) + Vn cos(αn + φn)(t − tn), (2)

Y (t ) = Y (θn, tn) + Vn sin(αn + φn)(t − tn), (3)

where the time t � tn with X (θn, tn) = R(θn, tn) cos(θn) and
Y (θn, tn) = R(θn, tn) sin(θn). Once the angle θ is known,
the angle φ is obtained and corresponds to the an-
gle formed between the tangent and horizontal lines at
the position X (θ ),Y (θ ), which can be written as φ =
arctan[Y ′(θ, t )/X ′(θ, t )] where Y ′ and X ′ are derivatives with
respect to θ . Figure 1 illustrates the billiard under investiga-
tion for ε = 10−2, η = 20, and p = 3. The green and violet
curves represent the boundary of the billiard at two instants.
Figure 1(a) depicts a portion of the particle’s trajectory. At in-
stant tn, the particle collides against the boundary and acquires
velocity Vn. The point of the nth collision is characterized by
the polar coordinates (Rn, θn). After a time interval traveling
in a straight line, the particle reaches the boundary at instant
tn+1 and, immediately after the collision, its velocity is Vn+1.
The gray region represents the portion of space outside the
time-dependent boundary. Figure 1(b) corresponds to an am-

FIG. 1. (a) Piece of a particle’s trajectory in the billiard under
investigation. (b) Amplification of a portion on the top left of (a).

plification of the top left portion of the billiard illustrated in
Fig. 1(a), where the particle undergoes the nth collision. In
this figure, we use dashed lines to represent the tangent and
normal directions relative to the boundary at the instant of the
nth collision. This figure also presents the variable αn, which
is the outgoing angle between the vector velocity and the line
tangent to the boundary. We also include in Fig. 1(b) the com-
ponents of Vn relative to the tangent and normal directions
with blue color. Considering that the particle travels with con-
stant speed between collisions, its position within the billiard
is given in polar coordinates as Rp(t ) =

√
X 2(t ) + Y 2(t ). The

angular position θ at the instant of impact is found numeri-
cally through the equation Rp(θn+1, tn+1) = R(θn+1, tn+1).

The particle’s velocity has two components, a tangen-
tial and a normal. If the collisions of the particle with the
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boundary are inelastic, partial loss of energy is observed,
affecting, according to the reflection law, only the normal
component of the velocity. At the instant of collision, the
reflection law is written as

V′
n+1 · Tn+1 = V′

n · Tn+1, (4)

V′
n+1 · Nn+1 = −γ V′

n · Nn+1, (5)

where γ ∈ [0, 1] is the restitution coefficient. If γ = 1, the
collisions are completely elastic, allowing the system to ex-
hibit Fermi acceleration as the LRA conjecture states, whereas
γ < 1 leads to a fractional energy loss of the particles. The
term V′ corresponds to the velocity of the particle in the
noninertial reference frame of the boundary; the normal and
tangent unit vectors are given, respectively, by

Nn+1 = − sin(φn+1)i + cos(φn+1)j, (6)

Tn+1 = cos(φn+1)i + sin(φn+1)j. (7)

After the n + 1 impact, the tangential and normal velocity
components are given by

Vn+1 · Tn+1 = Vn · Tn+1, (8)

Vn+1 · Nn+1

= −γ Vn · Nn+1 + (1 + γ )Vb(tn+1 + Z (n)) · Nn+1, (9)

where Vb(tn+1 + Z (n)) corresponds to the boundary velocity
given by

Vb = dR

dt

∣∣∣∣
tn+1+Z (n)

[cos(θn+1)i + sin(θn+1)j]. (10)

The term Z (n) is a random number between 0 and 2π

introduced to create a stochastic behavior in the movement of
the oscillating boundary. The introduction guarantees that the
α × θ plane is covered uniformly, i.e., the chaotic orbit can
diffuse in all parts of the phase space. As a side remark, we
mention that the stochastic oval billiard can be considered as a
model for heat transfer of a gas [12], as a potential application.

Finally, the speed of the particle and the angle α at the
collision (n + 1) are given, respectively, by

Vn+1 =
√

(Vn+1 · Tn+1)2 + (Vn+1 · Nn+1)2, (11)

αn+1 = arctan

[
Vn+1 · Nn+1

Vn+1 · Tn+1

]
. (12)

With the above equations, the description of the system is
complete.

The dissipative oval billiard has a transition from limited
for γ �= 1 to unlimited energy growth for γ = 1 [4,34]. It has
been shown that for restitution parameter values close to but
different from one, the dissipation is sufficient to prevent the
particle from showing FA. When γ is increased to reach the
critical value, the system displays scale invariance accompa-
nying the TLUG. Since our goal is to characterize the TLUG,
we focus on the discussion of on finding the order parameter
and its corresponding susceptibility.

III. THE TRANSITION FROM LIMITED TO UNLIMITED
ENERGY GROWTH

Three parameters control the system: η, associated with
the movement of the boundary, ε, related to the amplitude
of the circle deformation, and γ , denoting the restitution
parameter. For η = 0, the billiard is static, and the system
is nonintegrable. Depending on ε and the initial conditions,
chaotic components are observed in the phase space, and cor-
responding FA is expected to occur in the driven billiard. This
holds for values of the parameter ε �= 0 because the system
turns into the circular billiard if ε = 0, whose static version is
integrable. Therefore, for ηε �= 0, the θ × α plane displays a
chaotic sea, and chaotic diffusion is observed in the dynamics.

The natural observable along the chaotic dynamics to prove
the existence of the diffusion is the square root of the averaged
squared velocity, given by

Vrms =
√√√√ 1

M

M∑
i=1

1

n

n∑
j=1

V 2
i, j, (13)

where M corresponds to the number of initial conditions
whereas n is the number of collisions of the particle with the
boundary. As discussed in Ref. [34], the behavior of Vrms is
described as follows and as shown in Fig. 2. For relatively
low initial velocity, V0 ≈ 0, the curves of Vrms grow as Vrms ∝
[n(ηε)2]β with β ∼= 1/2 yielding the diffusion of particles in
the velocity space to be equivalent to a normal diffusion. For
large enough n, the curves bend towards a regime of saturation
given by a constant plateau [12], marking a limitation for dif-
fusion Vsat ∝ (1 − γ )α1 (ηε)α2 with α1 = (−1/2), α2 = 1. The
changeover from growth to the saturation is written as nx ∝
(1 − γ )z1 (ηε)z2 , z1 = −1, and z2 = 0. Using proper scaling,
all curves shown in Fig. 2(a) fall onto each other in a single
and universal plot confirming a scale invariance for the chaotic
diffusion, as shown in Fig. 2(b). Similar values of ε and η

whose product is the same as the ones used in Fig. 2 provide
indistinguishable results if the following two parameter ranges
are avoided: (1) ε ≈ 0 or, similarly, extremely high values of
η, in which case the billiard takes the shape similar to a circle,
and (2) for very small values of η (i.e., η ≈ 0), for which the
billiard approaches the static regime.

The parameter controlling the criticality of the system is
γ . For γ = 1, FA can be observed, whereas γ < 1 leads to
the suppression of the energy gained by the particle. As a
consequence, FA is no longer observed. This changeover is
observed in both stochastic and periodically driven models.
Moreover, as can be seen in Fig. 2, the root-mean-square
velocity behaves very similarly in both cases, showing only a
small deviation. In light of this fact, we now proceed to calcu-
late a candidate for the order parameter for the transition. The
order parameter goes continuously to zero for a second-order
phase transition while its susceptibility diverges in the same
limit. In previous works [12,35], a set of critical exponents
was provided using a phenomenological approach and consid-
ering a set of scaling hypotheses allied with a homogeneous
function. The plateau marking the saturation regime for the
root mean square of the squared average velocity is given
by Vrms,sat ∝ (1 − γ )−1/2, therefore diverging in the limit of
γ → 1. However, an observable defined as σ = 1/Vrms,sat ∝
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FIG. 2. (a) Vrms vs n(ηε2) for different values of γ close to the
critical point, ε = 0.2 and two different values of η. The circles
represent the numerical results for the stochastic model and the
green squares for the periodically driven billiard, while the solid
lines were obtained analytically. (b) Overlap of the Vrms curves after
the following scaling transformations: (i) V → V/[(1 − γ )α1 (ηε)α2 ];
(ii) n → n/[(1 − γ )z1 (ηε)z2 ].

√
1 − γ is eligible as an order parameter. We note that our

definition of this order parameter is to be understood as en-
capsulating the qualitative change of the energy growth while
a vanishing value of σ indicates that the critical point γ = 1
is approached. Indeed, it goes continuously to zero in the limit
γ → 1. Its susceptibility, defined as χ = ∂σ

∂γ
, diverges in the

same limit.
Let us now discuss the results for the average squared

velocity. For the stochastic model, in which we consider the
random number Z in the argument of the velocity of the
wall, the probability distribution for the velocity in the two-
dimensional phase space α vs θ is uniform. It allows us to
assume the statistical independence between the velocity and
the dynamical variables θ and α. In this case, taking the aver-
age of the velocity given by Eq. (11) for the ranges α ∈ [0, π ],
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FIG. 3. Histogram of the normalized probability distribution for
the velocity for an ensemble of 105 particles in the stochastic and dis-
sipative oval billiard. The blue (dark gray) bars are obtained after ten
collisions, while red bars (light gray) correspond to 100 collisions.
The inset plot is obtained after 50 000 collisions. The initial velocity
is V0 = 0.2 and the control parameters are η = 0.02 and γ = 0.999
with p = 2.

θ ∈ [0, π ], and t ∈ [0, 2π ] leads to

V̄ 2
n+1 = V̄ 2

n

2
+ γ 2V̄ 2

n

2
+ (1 + γ )2η2ε2

8
. (14)

Although the random number Z becomes irrelevant when
talking about |Vn+1| for the range t ∈ [0, 2π ], its addition
to the argument of the velocity of the wall is necessary.
The phase space α vs θ is uniform, which is a neces-
sary condition to obtain V̄ 2

n+1. The average squared velocity

can be obtained assuming that V̄ 2
n+1 − V̄ 2

n = V̄ 2
n+1−V̄ 2

n

(n+1)−n
∼= dV̄ 2

dn =
V̄ 2(γ 2−1)

2 + (1+γ )2η2ε2

8 , where the differential equation has the
following solution,

V̄ 2(n) = V̄0
2e

(γ 2−1)
2 n + (1 + γ )

4(1 − γ )
η2ε2

[
1 − e

(γ 2−1)
2 n

]
. (15)

To compare the analytical prediction with the simulations, we
must average V̄ 2 over the orbit, which leads to

〈V̄ 2(n)〉 = 1

n + 1

n∑
i=0

V̄ 2(i)

= (1 + γ )

4(1 − γ )
η2ε2

+ 1

n + 1

(
V̄0

2 − (1 + γ )

4(4 − γ )η2ε2

)⎡
⎣1 − e

(γ 2−1)(n+1)
2

1 − e
(γ 2−1)

2

⎤
⎦.

(16)

Figure 3 shows the normalized probability distribution
P(V ) for the three dynamical regimes: short, intermediate,
and large time ranges. The parameters used are η = 0.02 and
γ = 0.999. For larger times, a presumed Gaussian distribution
flattens until the left-hand side of the curve reaches the lower
velocity limit. The lower limit is given by the lowest velocity
of the moving boundary. This change in probability behavior
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to a non-Gaussian distribution is similar to the one already
observed in the Fermi-Ulam model [36,37].

Figure 2(a) shows the dependence of Vrms vs n for both
stochastic and periodically driven models for different values
of ε and η, as labeled in the figure. The range of param-
eters we are interested in is γ close to one, specifically
γ ∈ [0.999, 0.999 95] and small εη ∈ [0.002, 0.02]. The last
interval was chosen to facilitate numerical simulations, but
other positive values would give similar results. The symbols
correspond to the numerical simulation obtained from the
mapping iteration considering an ensemble of M = 5 × 103

different initial conditions starting with the same initial veloc-
ity V0 = 0.001. The solid lines denote the analytical results.
As we can see, the agreement with the numerical curves is
excellent.

Considering now the limit of n → ∞, the saturation for the
average velocity gives

Vrms,sat =
√

1 + γ

1 − γ

ηε

2
. (17)

As discussed earlier, the order parameter σ is then given by

σ = 1

Vrms,sat
=

√
1 − γ

1 + γ

2

ηε
. (18)

We notice σ depends on two sets of control parameters:
(i) γ , which brings the criticality for the dynamics and makes
σ → 0 when γ → 1, and (ii) ηε, which by the range of
control parameters considered does not bring criticality to the
dynamics.

Let us now determine the expression of the susceptibility
χ , which gives information on how the order parameter re-
sponds to a variation of the control parameter γ responsible
for the criticality. It is defined as

χ = ∂σ

∂γ
= − 2

ηε(1 + γ )2

√
1 + γ

1 − γ
, (19)

and it diverges in the limit γ → 1.
Furthermore, it is worth noting that the mean velocity

found in both the stochastic and periodically driven systems
exhibits a strikingly similar behavior, as depicted in Fig. 2.
As a result, we can employ Vrms,sat as an approximate order
parameter to effectively describe the TLUG for both models.
In this context, it is compelling to examine the fluctuations
within the system prior to and on the critical point γ = 1. To
accomplish this, we can assess the standard deviation ω of the
velocity across M initial conditions:

ω(ηε, n) = 1

M

M∑
j=1

√
V 2

j (ηε, n,V0) − V
2
j (ηε, n,V0). (20)

Figure 4(a) shows the behavior of the standard deviation ω

for the dissipative and Fig. 4(b) for the nondissipative cases.
Similar to Vrms, ω has a growth regime for low values of n
and reaches a plateau after many collisions. Therefore, the
fluctuations do not grow unbounded as they would for the
nondissipative case. There is a rather limited range of fluctu-
ations, which depends on the parameters η and ε. It indicates
that the range of “interactions” during the TLUG is limited,

FIG. 4. Standard deviation of Vrms vs n for different values of the
control parameters γ and εη for (a) the dissipative and (b) nondis-
sipative cases. The horizontal axis is chosen to show the growth
exponent is the same for all curves. Moreover, the standard deviation
has the same critical exponents as the Vrms curves.

which is expected as the dissipation leads to a phase space
contraction, suppressing the FA.

Moreover, to further assert the emergence of criticality
when the critical point γ = 1 is reached, we calculate the
mean cross-correlation C of M different trajectory velocities
V (n) in the phase space,

C = 1

M

M∑
i=1

M∑
j=1
j �=i

1
n

∑n
k=1[Vi(k) − V i][Vj (k) − V j]√(

V 2
i − V

2
i

)(
V 2

j − V
2
j

) , (21)

with the means of the velocities being taken over the number
of collisions. Repeating this process for different values of γ

in the range [0.995,1], we observe a sudden increase in the
cross-correlation for γ = 1, as can be seen in Fig. 5. This
result suggests the emergence of a collective behavior in the
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FIG. 5. Mean cross-correlation C for 20 different values of γ ∈
[0.995, 1]. Each data point represents the average of the cross-
correlation between the V (n) of 1000 initial conditions for a system
with ε = 0.1 and η = 0.1. The average of the velocity is taken over
106 collision and each initial condition has initial velocity V0 =
0.001.

velocity observable for different initial conditions when we
approach the critical point.

The change in the velocity behavior can be easily traced for
the general case by comparing the system’s dynamics in two
situations: when the collisions are elastic versus the collisions
being inelastic.

Figure 6 illustrates the behavior of Vrms as a function of n
for different values of εη considering elastic collisions, i.e.,
γ = 1. In this scenario, the system presents FA where, after a
short number of collisions, the velocity increases monoton-
ically with an exponent β ≈ 1/2. However, for γ < 1, the
dissipation implies an area contraction of the accessible phase
space leading to the creation of attractors. Given they are far
away from infinity, unlimited diffusion is prevented. Hence,
for those values of γ , the system shows a saturation regime,
as shown in Fig. 2, demonstrating that the unlimited energy
growth has been suppressed.

Let us briefly discuss the elementary excitation responsible
for the diffusion of the particles. Each particle of the ensem-
ble’s velocity changes after a collision with the boundary. In
this context, the elementary excitation or the effect analo-
gous to an elementary excitation occurs due to the product
εη, which is the maximal velocity of the billiard boundary.
Therefore εη defines the elementary unit of the underlining
random walk “motion” of the trajectories in the phase space.
Indeed, if we take the limit of short times and small initial
velocities, the diffusion of the velocity is given by V ≈ ηε

2

√
n.
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FIG. 6. Vrms vs n for the nondissipative oval billiard, i.e., γ = 1,
for four different combinations of ηε.

This shows that for a small n, the particle diffuses in the phase
space analogously to a random walk with step size ηε

2 .

IV. SUMMARY

We have analyzed Fermi acceleration in a driven and
stochastified oval billiard with and without dissipation empha-
sizing its unlimited versus limited energy growth. Our focus
was hereby on the analogy to a phase transition taking place
from the nondissipative to the dissipative dynamics. The sup-
pression of infinite diffusion in momentum space happens due
to inelastic collisions leading the dynamics for a sufficiently
long time to approach a saturation regime. We identified an
order parameter that goes continuously to zero at the critical
point and whose corresponding susceptibility diverges in the
same limit. We argued that the found order parameter should
be also applicable to the periodically driven billiard. The ele-
mentary excitation is given by the change of the velocity in an
elementary collision and we suggest it depends on the product
of the involved parameters of the driven oval billiard. Alto-
gether this makes us conclude that the TLUG shares several
features with a common phase transition of second order.
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