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Some dynamical properties for a classical particle confined inside a closed region with an
elliptical–oval-like shape are studied. The dynamics of the model is made by using a two-
dimensional nonlinear mapping. The phase space of the system is of mixed kind and we
have found the condition that breaks the invariant spanning curves in the phase space.
We have discussed also some statistical properties of the phase space and obtained the
behaviour of the positive Lyapunov exponent.
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1. Introduction

The interest in understanding the dynamics of billiard problems becomes in earlies 1927 when Birkhoff [1] introduced a
system to describe the motion of a free particle inside a closed region with which the particle suffers elastic collisions. In
general, a billiard is defined by a connected region Q � RD, with boundary @Q � RD�1 which separates Q from its complement.
Inside the billiard, a point particle of mass m (commonly it is assumed to be the unity) moves freely along a straight line until
it encounters the boundary. After the collision, it is assumed that the particle is specularly reflected. It thus implies that the
incidence angle must be equals to the reflection angle. It is well known that depending on the shape of the boundary as well
as on the combination of both control parameters and initial conditions, the dynamics of the particle might generate phase
spaces of different kinds, including: (i) regular; (ii) ergodic; (iii) mixed. The integrability of the regular cases is generally re-
lated to some kind of preservation in the dynamics, in particular the angular momentum. On the other hand, for the com-
pletely ergodic billiards, only chaotic and therefore unstable periodic orbits are present in the dynamics. In order to illustrate
systems that show such property, the so called Bunimovich stadium [2,3] and the Sinai billiard [4,5] consist of typical exam-
ples. For these systems the time evolution of a single initial condition, for appropriated combinations of control parameters,
is enough to fills up ergodically the entire phase space. Finally, there is a representative number of billiards that present
mixed phase space structure [6–12], which have control parameters with different physical significance.

Depending on the combination of both the initial conditions and control parameters, the phase space presents a very rich
structure which could, in principle, contains invariant spanning curves (sometimes also called as invariant tori), Kolmogo-
rov–Arnold–Moser (KAM) islands and chaotic seas. This mixed structure of the phase space is generic for non-degenerate
Hamiltonian systems [13] and might be observed in problems of one-dimensional time-dependent potentials [14–18], rip-
pled channels [19,20] and many other different problems including tokamak [21–23].
. All rights reserved.

eira), edleonel@rc.unesp.br (E.D. Leonel).

mailto:dfmo@rc.unesp.br
mailto:edleonel@rc.unesp.br
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


D.F.M. Oliveira, E.D. Leonel / Commun Nonlinear Sci Numer Simulat 15 (2010) 1092–1102 1093
In this paper, we propose a special geometry for the boundary of a classical billiard, which we call as elliptical–oval
boundary. Our main goal is to understand and describe some dynamical and moreover chaotic properties of such system.
It is important to say that the shape of the boundary is controlled by three relevant control parameters. Varying such param-
eters we can recover the results of the circular billiard and elliptical billiard, the oval billiard and finally we obtain totally
new results considering simultaneously variation of both control parameters, thus having an elliptical–oval billiard shape.

In the first part of this paper, we discuss all the details needed to construct the mapping that describes the dynamics of
the model. The shape of the boundary is dependent on three control parameters and its expression in polar coordinates is
given by Rðh; p; e; �Þ ¼ ð1� e2Þ=ð1þ e cosðhÞÞ þ � cosðphÞ, where p is an integer number, e and � are parameters that control
the circle deformation. Inside the boundary, we consider that a classical particle of mass m is moving freely and in the total
absence of any external field. When the particle hits the boundary it changes the direction according to a specular reflection
without suffering fractional loss of energy. The phase space is mixed, in the sense that, depending on both, the combination
of the control parameters and initial conditions, KAM islands usually surrounded by a chaotic sea, limited by a set of invari-
ant spanning curves, can be observed. We have found a critical control parameter where no invariant spanning curves are
observed. This condition is related to the fact that the boundary may changes locally from positive curvature to negative cur-
vature. After constructing the mapping, we explore some numerical results from it. For the case of e ¼ � ¼ 0, we recover the
results of the circular billiard where only regular dynamics is observed in the phase space. Considering the situation where
� ¼ 0 and e – 0, then the results for the elliptical billiard are obtained. If we assume that e ¼ 0 and � – 0, we obtain the re-
sults for the oval billiard. The last case is assuming that e – 0 and � – 0.

For the second part of the paper, we obtain and discuss some numerical results for the four possible cases, as discussed
above. We show that the positive Lyapunov exponent grows as the control parameters increase and it passes a regime of
maximum then experiencing a small decay. We explain the increase in the Lyapunov exponent based on the behaviour of
the histogram of frequency for chaotic orbits.

The paper is organized as follows: in Section 2 we give all the details needed for the construction of the nonlinear map-
ping that describes the dynamics of the elliptical–oval billiard. Section 3 is devoted to discuss our numerical results and
dynamical properties of the system as function of the control parameters. Finally, in Section 4 we drawn our conclusions.

2. The elliptical–oval billiard and the mapping

In this section we discuss all the details needed for the construction of a nonlinear map that describes the dynamics of the
problem. The model consists basically in consider the dynamics of a classical particle of mass m confined into a closed region
suffering elastic and specular collisions with the border. When the particle hits the boundary it is reflected with the same
velocity. The radius of the boundary, in polar coordinates, is given by
Rðh;p; e; �Þ ¼ 1� e2

1þ e cosðhÞ

� �
þ � cosðphÞ: ð1Þ
The control parameter e 2 ½0;1Þ controls the deformation of the circle thus recovering circle and elliptical shapes. The control
parameter � 2 ½0;1Þ also controls a circle deformation thus recovering oval shapes. p is an integer number and h 2 ½0;2pÞ is a
counterclockwised angle measured with respect to the positive horizontal axis. For the case e ¼ � ¼ 0, we recover the circu-
lar boundary. If e – 0 and � ¼ 0 we have the elliptical boundary. For the case of e ¼ 0 and � – 0, we obtain the oval shape
boundary and finally for the case of e – 0 and � – 0 we obtain the elliptical–oval-like shape boundary. It is shown in
Fig. 1 the geometry of the boundary for different values of control parameters e, � and p.

As it is usual in the literature, the dynamics of the particle is described in terms of a two-dimensional nonlinear mapping
Tðhn;anÞ ¼ ðhnþ1;anþ1Þwhere the dynamical variable hn denotes the angular position of the particle when it hits the border. an

is the angle that the trajectory does with the tangent vector to the border at the angular position hn (the illustrations of these
angles are made in Fig. 2). The index n denotes the nth collision of the particle with the boundary. Using polar coordinates,
we can find the expressions for both XðhnÞ and YðhnÞ as
XðhnÞ ¼
1� e2

1þ e cosðhnÞ
þ � cosðphnÞ

� �
cosðhnÞ; ð2Þ

YðhnÞ ¼
1� e2

1þ e cosðhnÞ
þ � cosðphnÞ

� �
sinðhnÞ: ð3Þ
Given an initial condition ðhn;anÞ, the angle between the tangent and the boundary at the position XðhnÞ and YðhnÞ is
/n ¼ arctan
Y 0ðhnÞ
X0ðhnÞ

� �
; ð4Þ
where the expressions for both X0ðhnÞ and Y 0ðhnÞ are written as
X0ðhnÞ ¼
dRðhnÞ

dhn
cosðhnÞ � RðhnÞ sinðhnÞ; ð5Þ

Y 0ðhnÞ ¼
dRðhnÞ

dhn
sinðhnÞ þ RðhnÞ cosðhnÞ: ð6Þ



Fig. 1. Shapes of the boundaries for different combinations of control parameters, as shown in the figure.

Fig. 2. Illustration of a particle’s trajectory.
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The term dRðhnÞ=dhn is given by
Fig. 3.
orbit.
dRðhnÞ
dhn

¼ ð1� e2Þe sinðhnÞ
½1þ e cosðhnÞ�2

� �p sinðphnÞ: ð7Þ
We stress that the particle does not suffers influence of any external field upon collisions with the boundary. The particle
thus travels with constant velocity along a straight line until reaches the boundary. To obtain the new angular position
for the next hit of the particle with the border, we must solve the following equation
Yðhnþ1Þ � YðhnÞ ¼ tanðan þ /nÞ½Xðhnþ1Þ � XðhnÞ�; ð8Þ
where /n is obtained from the slope between the tangent vector and the positive horizontal axis. Xðhnþ1Þ and Yðhnþ1Þ are the
new positions of the particle at the angular position hnþ1, which is numerically obtained as solution of Eq. (8). The new angle
that the trajectory does with the tangent at hnþ1 is obtained from geometrical considerations, as can be seen in Fig. 2. It is
given by
anþ1 ¼ /nþ1 � ðan þ /nÞ: ð9Þ
Fig. 2 illustrates geometrically all the details needed to obtain the new angle anþ1. Thus, we obtain that the map which de-
scribes the dynamics of the model is given by
T :
Fðhnþ1Þ ¼ Rðhnþ1Þ sinðhnþ1Þ � YðhnÞ � tanðan þ /nÞ½Rðhnþ1Þ cosðhnþ1Þ � XðhnÞ�;
anþ1 ¼ /nþ1 � ðan þ /nÞ

�
ð10Þ
where hnþ1 is numerically obtained as the solution of Fðhnþ1Þ ¼ 0, Rðhnþ1Þ ¼ ð1� e2Þ=ð1þ e cosðhnþ1ÞÞ þ � cosðphnþ1Þ and
/nþ1 ¼ arctan½Y 0ðhnþ1Þ=X 0ðhnþ1Þ�.

3. Numerical results

Let us now present and discuss some of our results. To illustrate the behaviour of the phase space for some of the possible
combinations of control parameters, we shown in Fig. 3, the phase space generated by iterating the Eq. (10) for: (a) e ¼ � ¼ 0
and (b) e ¼ 0:5 and � ¼ 0. For case (a) we can see both straight lines (quasi-periodic behaviour) in the phase space and
Phase space for the elliptical–oval billiard considering the control parameters: (a) e ¼ � ¼ 0, (b) e ¼ 0:5 and � ¼ 0, (c) a rotator orbit and (d) a librator
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periodic orbits marked by a finite set of points in the phase portrait, as it is known from the circular billiard [6,24]. On the
other hand, for (b) we can see a large double island limited by a separatrix curve and a set of invariant spanning curves, thus
recovering results of the elliptical phase space as it is well known in the literature [6,25]. In Fig. 3(b) we can observe two
different kinds of behaviour in the phase space separated by a separatrix, namely, rotators and librators. Librators consist
of trajectories that are confined between the two focus and in the phase space are confined into the separatrix curve. On
the other hand, rotators are trajectories near to the boundary exploring all the values of h. In the phase space they are outside
of the separatrix curve. Fig. 3(c, d) shows the behaviour of both, rotators and librators, respectively.

If we consider the case with e ¼ 0 and � – 0, as shown in Fig. 4 we can see a complex hierarchy of behaviours in the phase
space including a large chaotic sea. The control parameters used in the construction of Fig. 4 were (a) � ¼ 0:1 and p = 2; (b)
� ¼ 0:05 and p ¼ 3. It is also easy to see the presence of invariant spanning curves. Therefore, if we increase the control
parameter slightly above the condition
Fig. 4.
�c ¼
1

1þ p2 ; p P 1; ð11Þ
all the invariant spanning curves are destroyed. The explanation for such kind of destruction is related to the shape of the
boundary, thus now presenting some regions of nonconvex curvature. If we consider � < �c the boundary is convex, however,
if � > �c we can observe nonconvex structure on the boundary (for more details see Appendix). To illustrate the absence of
the invariant spanning curves in the phase space, it is shown in Fig. 5 the phase space for the following combinations of con-
trol parameters: e ¼ 0 and (a) � ¼ 0:21 and p ¼ 2; (b) � ¼ 0:11 and p ¼ 3.

An important property regarding the chaotic sea that must be discussed is the behaviour of the positive Lyapunov expo-
nent. It is well known that the Lyapunov exponent has a great applicability as a practical tool that can quantify the average
expansion or contraction rate for a small volume of initial conditions. As discussed in [26], the Lyapunov exponents are de-
fined as
kj ¼ lim
n!1

1
n

ln jKjj; j ¼ 1;2; ð12Þ
where Kj are the eigenvalues of M ¼
Qn

i¼1Jiðai; hiÞ and Ji is the Jacobian matrix evaluated over the orbit ðai; hiÞ. In order to
illustrate that the oval billiard has a chaotic component in the phase space, we shown in Fig. 6 the behaviour of the positive
Lyapunov exponent as function of the number of collisions of the particle with the boundary for 5 different initial conditions
both chosen on the chaotic sea. Each initial condition was iterated up to 108 times. As we see in Fig. 6(a) one of the time
Phase space for the oval billiard. The control parameters used in the construction of the figures were: (a) � ¼ 0:1 and p ¼ 2; (b) � ¼ 0:05 and p ¼ 3.



Fig. 5. Phase space for the oval billiard. The control parameters used in the construction of the figures were: (a) � ¼ 0:21 and p ¼ 2; (b) � ¼ 0:11 and p ¼ 3.
As one can see the invariant spanning curves were destroyed.

Fig. 6. Convergency of the positive Lyapunov exponent for the oval billiard. The control parameters used in the figure were (a) � ¼ 0:1 and p ¼ 2, (b)
� ¼ 0:05 and p ¼ 3.
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series suffers a small decay for approximately 4:5� 106 collisions with the boundary. After that, the positive Lyapunov expo-
nent tends towards a regime of convergency marked by a constant plateau. The short decay is due to the fact that the particle
has been confined into a sticky region by around 4:5� 106 iterations. The control parameters used in the construction of
Fig. 6(a) were � ¼ 0:1 and p ¼ 2 and (b) � ¼ 0:05 and p ¼ 3. The average of the positive Lyapunov exponent for the ensemble
of 5 samples furnishes (a) �k ¼ 0:247� 0:003 and (b) �k ¼ 0:313� 0:001. The values �0:003 and �0:001 correspond to the
standard deviation of the 5 samples.

Let us now present the behaviour of the positive Lyapunov exponent as function of the control parameter �. It is shown in
Fig. 7 the behaviour of k� � for two values of p, namely (a) p ¼ 2 and (b) p ¼ 3. The ranges of values for � used were: (a)
� 2 ½0:06;0:40� and (b) we considered � 2 ½0:03;0:18�. The initial conditions used in the construction of both figures were
a0 ¼ 0:3 and h0 uniformly distributed in the range of ½0;2p�. Each point was obtained from the average of 5 different initial
conditions. Each initial condition was iterated 106 times. The error bars correspond to the standard deviation of the 5 sam-
ples. Note however that, contrary to what was expected to be observed, after the destruction of the invariant spanning
curves, the positive Lyapunov exponent does not changes suddenly. The arrow in the Fig. 7 indicates the value of the critical
parameter �c .

We can also characterize some properties of the chaotic sea using average quantities along the phase space. We study the
behaviour of the average angle �a as well as the behaviour of the deviation of the average angle, which we call as x. We define
x as
Fig. 7.
Lyapun
xðn; �Þ ¼ 1
M

XM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i ðn; �Þ � �ai
2ðn; �Þ

q
; ð13Þ
where the average angle a is obtained using that
�aðn; �Þ ¼ 1
nþ 1

Xn

i¼0

ai: ð14Þ
Eq. (13) was iterated using an ensemble of M ¼ 2� 103 different initial conditions chosen along the chaotic sea. Fig. 8(a)
shows the behaviour of the average angle �a as function of n and Fig. 8(b) shows the behaviour of x as function of n for three
different control parameters. It is easy to see in Fig. 8 two different kinds of behaviours. For short iteration number and after
a short transient both �a and x grow and suddenly they bend towards a regime of saturation for large n. The changeover from
(a) Behaviour of the Lyapunov Exponent as function of the control parameter �. The control parameter used were (a) p ¼ 2 and (b) p ¼ 3. The
ov Exponents for the critical value of � are indicate in the figure.



Fig. 8. (a) The average angle �a as function of n and (b) x as function of n.

Fig. 9. Phase space for the elliptical–oval billiard. The control parameters used in (a) and (b) were: (a) � ¼ 0:01; (b) � ¼ 0:06 and fixed p ¼ 2 and e ¼ 0:6. The
critical value of � for these control parameters is �c ¼ 0:05. As one can see, in fig. (b), after the changing of curvature the invariant spanning curves were
destroyed.
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growth to the saturation is marked by a crossover iteration number nx. When n� nx the deviation of the average angle
grows according to the power law
Fig. 10
after th
xðn; �Þ / nb: ð15Þ
After doing some extensive simulation for the range of � 2 ½0:2001;0:21� we obtain that b ¼ 1:23� 0:02. As n increases,
n� nx, x approaches a regime of saturation. However for the range of control parameters we have considered, the plateaus
do not seem to depend on the control parameters. Such a property is related to the limited region of the phase space, i.e.
a 2 ½0;p� as well as to the symmetry existing in the regions a 2 ½0;p=2� and a 2 ½p=2;p�.

Let us now consider the elliptical–oval case. We assume that both e – 0 and � – 0. It is shown in Fig. 9(a) the phase space
for different values of � and considering fixed the values of e and p, as shown in the figure. We can see that the phase space
shows a rich structure of behaviour exhibiting KAM islands surrounded by a chaotic sea and a set of invariant spanning
curves. The invariant spanning curves will be destroyed for the case of nonconvex curves. The condition that destroys the
invariant spanning curves is given by
�c ¼
1� e

ð1þ eÞð1þ p2Þ ; p > 1: ð16Þ
Considering the case where � > �c , all the invariant spanning curves are destroyed, as shown in Fig. 9(b).
As a next step we obtain the behaviour of the positive Lyapunov exponent as function of � as shown in Fig. 10. Fig. 10(a)

shows the positive Lyapunov exponent obtained for the chaotic sea using different values for the control parameter e and �. It
must be emphasized that different values of the parameter e generate different behaviour for Lyapunov exponent. However,
applying the transformation �! �e0:5, all the curves grow together as shown in Fig. 10(b). We can see in Fig. 10(a) for a small
�, the value of the Lyapunov exponent grows, passing then at a maximum value and experiencing a small decrease. As an
attempt to explain the increase in the Lyapunov exponent, we obtain the histogram of frequency for the visited regions
in the phase space. We have produced both histograms for the variables a and h. It is then shown in Fig. 11(a) the histogram
of frequency for the control parameters p ¼ 2, e ¼ 0:2, (a,b) � ¼ 0:1 and (c,d) � ¼ 0:4. We can see that raising the control
parameter �, causes a slightly modification to the behaviour of the histogram of frequency for the variable a. However it
causes a profound change in the form of the histogram of frequency for the variable h. Basically there is a small valley for
. (a) Behaviour of the Lyapunov Exponent as function of the control parameter �. The control parameter used were (a) p = 2 and (b) their collapse
e transformation �e0:5.



Fig. 11. Histogram of frequency as function of the angles a (a,c) and h (b and d). The control parameters used were p ¼ 2, e ¼ 0:2 and (a and b) � ¼ 0:1; (c
and d) � ¼ 0:4.
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the region around a ¼ p=2 for � ¼ 0:1 (see Fig. 11(a)) which just becomes more deep for the case of � ¼ 0:4 (see Fig. 11(c)).
The behaviour for the frequency of h is rather more sensitive to the variation of �. For � ¼ 0:1 we see a hump around h ¼ p
and two shallow valleys around h ¼ 1 and h ¼ 5, respectively. For � ¼ 0:4 however, the behaviour is drastically changed. The
hump around h ¼ p is now replaced by a constant plateau around the region of h 2 ½2:5;4�. The two shallow valleys are now
replaced by two deep valleys around h ¼ p=2 and h ¼ 3p=2. Thus, for � ¼ 0:4 there are preferential regions on the phase
plane that the particle visit with high frequency that were not observed for � ¼ 0:1. Of course it accentuates regions that
are also less visited as compared to the previous case. Such modifications in the phase space are assumed as the causes
for the increase in the Lyapunov exponent.
4. Conclusion

As a conclusion, we have studied a classical version of a static oval billiard. We obtained the expressions of a two-dimen-
sional nonlinear mapping that describe the dynamics of the model. We shown that the phase space has a mixed form. We
have obtained an expression that relates both control parameters p and �. We shown when � > �c the shape of the boundary
changes from positive curvature to negative curvature and an important consequence of this changing is the sudden
destruction of the invariant spanning curves in the phase space. The average angle a and its corresponding deviation were
obtained as function of n. The behaviour of the positive Lyapunov exponent for the chaotic region was also obtained and
discussed.
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Appendix

In this Appendix, we present the procedure to obtain the expression of the critical control parameter �c . When we in-
crease the control parameter �, the shape of the boundary changes (see Fig. 1). We can obtain the expression for the critical
value �c , where the curvature of the boundary changes from positive ðj > 0Þ to negative ðj < 0Þ. Using polar coordinates the
expression for jðhÞ is given by
jðhÞ ¼ X 0ðhÞY 00ðhÞ � X00ðhÞY 0ðhÞ
½X02ðhÞ þ Y 02ðhÞ�

3
2

: ð17Þ
For the general case, the expressions for X 0ðhÞ, Y 0ðhÞ, X00ðhÞ and Y 00ðhÞ are
X0ðhÞ ¼ dRðhÞ
dh

cosðhÞ � RðhÞ sinðhÞ;

Y 0ðhÞ ¼ dRðhÞ
dh

sinðhÞ þ RðhÞ cosðhÞ;

X00ðhÞ ¼ d2RðhÞ
dh2 cosðhÞ � 2

dRðhÞ
dh

sinðhÞ � RðhÞ cosðhÞ;

Y 00ðhÞ ¼ d2RðhÞ
dh2 sinðhÞ þ 2

dRðhÞ
dh

cosðhÞ � RðhÞ sinðhÞ; ð18Þ
where dRðhÞ
dh and d2RðhÞ

dh2 are given by
dRðhÞ
dh

¼ ð1� e2Þe sinðhÞ
½1þ e cosðhÞ�2

� �p sinðphÞ;

d2RðhÞ
dh2 ¼ 2ð1� e2Þe2 sin2ðhÞ

½1þ e cosðhÞ�3
þ ð1� e2Þe cosðhÞ
½1þ e cosðhÞ�2

� �p2 cosðphÞ: ð19Þ
We obtain �c by considering the case where j0 ¼ 0. The expression for �c as function of e and p is
�c ¼
1� e

ð1þ eÞð1þ p2Þ ; p > 1: ð20Þ
Thus, when � < �c the boundary is strictly convex, however, if � > �c we can observe nonconvex pieces on the boundary. For
the case of e ¼ 0 we recover the expression for �c obtained for the oval billiard.
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