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a b s t r a c t

We consider time-dependence of dynamical transport, following a recent study of the stadium billiard in
which classical transmission and reflection probabilities were shown to exhibit exponential or algebraic
decays depending on the choice of the lead or ‘‘hole’’, raising the question of whether this feature is due
to special properties of the stadium. The system considered here is much more general, having a generic
mixed phase space structure, time-dependence of the dynamics, and Fermi acceleration (trajectories
with unbounded velocity). We propose an efficient numerical scheme for this model, observe escape and
transport effects including similar asymmetry, and also clear stretched exponential decays.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Consider a dynamical system that is ‘‘opened’’ by introducing
one or more holes in phase space; if the trajectory reaches one of
these, it ‘‘escapes’’ and is no longer considered. The initial condition
could be inside the system, in which case we speak of an escape
problem, and ask for quantities such as the ‘‘survival’’ probability
of remaining within the system for a given time, given an initial
condition chosen randomly with respect to a probability measure
supported within the system. Alternatively, the initial condition
could be located at one of the holes, in which case we speak of a
transport problem. We seek similar probabilities, now depending
on whether the trajectory returns to the initial hole (reflection) or
reaches another hole first (transmission).

The open dynamical system could refer to a physical particle
or ray approximation of a wave escaping from a container, or
more abstractly a representation of a metastable state in phase
space. Open dynamical systems provide a useful description
of microlasers [1], acoustics [2,3], fluid dynamics [4], chemical
reaction dynamics [5] and astronomy [6], as well as experiments
involving electrons in semiconductors [7] or cold atoms confined
by laser beams [8]. They also yield a useful means to investigate
quantum chaos [9], including random matrix approaches [10]
and the fractal Weyl conjecture [11,12,1], as well as Poincaré
recurrence [13], control [14] and nondestructive measurement of
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chaotic systems [15]. An important general question concerns the
effect of the hole size and location on the escape properties [16].

Here we consider the bouncer model, in which a particle
falls under gravity except for collisions with a sinusoidally
vibrating plate. For certain phases of oscillation (in other words a
periodic collection of time intervals) the plate becomes absorbing,
corresponding to a hole in the phase space. Our purpose is to
discuss the escape and transport problems for this system, as
a second and far more general test case for the recently noted
phenomenon of asymmetric transport [17], and for discussion of
outstanding issues related to open dynamical systems with time-
dependence, non-compact phase space and generic mixed phase
space structure. In the process we make the first observation
of stretched exponential decays of survival probabilities, in
contrast to the typical exponential or algebraic decays for strongly
chaotic [15,18,19] and most other (regular [20], mixed [13] or
intermittent [21]) open systems respectively.

For the transport problem we follow [17], in which it was
found for the stadium billiard that the transmission and reflection
probabilities for trajectories entering the billiard through one of
the two holes decayed at long times exponentially or algebraically
depending on the choice of entrance and exit hole. The stadium
billiard consists of two parallel straight sides and two semicircular
ends, with the usual billiard dynamics in which a particle moves in
straight lines except for mirror-like reflections from the boundary.
It is an ergodic and chaotic system [22], described as intermittent
as the chaos is interspersed with long stretches of regular motion
almost perpendicular to the straight sides, called ‘‘bouncing ball
orbits’’. The intermittency means that the survival probability for
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the escape problem (uniform initial conditions within the billiard)
decays as a constant divided by time, where the constant can be
written explicitly in termsof the geometrical parameters [21]. Thus
the exponential transport properties found in [17] for one hole in
a straight segment and one in a curved segment are unexpected;
the mechanism is that orbits from the hole in the curved segment
are blocked by the other hole from coming too close to the
bouncing ball orbits, and so have properties determined by the
chaos characterising the rest of the phase space.

The stadium billiard is however a very special chaotic system,
being completely ergodic, a property which is easily broken by
perturbations [23]. The bouncer model considered here is much
more general; in common with generic Hamiltonian systems it
has a mixed phase space consisting of elliptic islands and (for
certain parameter values) a large ergodic component with chaotic
properties. The question of escape and transport in systems with
genericmixed phase space consisting of elliptic islands and chaotic
sea(s) has been previously considered by many authors [13].
The general consensus is that time dependence of both escape
and transport probabilities is eventually algebraic (although often
apparently exponential at short times), but many different power
laws have been proposed and observed numerically [24]. Claims
of universal power law exponents have also been made [25]. We
do not observe a universal law, perhaps due to the small number
of prominent islands considered in our system (for fixed velocity
range; see below). The understanding of these exponents, and the
question of a universal law are interesting, important but also very
challenging problems,wewill postpone them to futurework.What
we can say about the system considered here is that clear stretched
exponential decay is observed, at least for finite times and in some
situations; this is discussed below.

In Section 2 we define the bouncer model and propose a new
numerical approach for efficient solution of its transcendental
equations. In Section 3 we consider the escape problem, leading
on to the transport problem in Section 4. Concluding discussions
are in Section 5.

2. The bouncer model and its numerical simulation

The bouncer model described above and defined below is
also a time-dependent system and exhibits Fermi acceleration, so
the phase space is not compact or of finite invariant measure.
Fermi acceleration is a phenomenon in which a particle gains
unbounded energy from a moving infinitely heavy plate (with
usually periodic, specifically sinusoidal motion considered). The
original motivation was the origin of high energy cosmic rays [26].
The particle returns to the plate either due to another plate which
is fixed, the Fermi–Ulam model; a gravitational field, the bouncer
model considered here [27]; or a combination of the two [28,
29]. These problems are generalisations of billiards due to the
hard collisions, however they are time-dependent and (in the
original form) one dimensional. The phase of the oscillation plays
the role of a second dimension, so that the collision map is two-
dimensional, as for two-dimensional billiards such as the stadium.
Fermi acceleration is observed for the bouncermodel, but not in the
Fermi–Ulam or combined models for periodic oscillations of the
plate. Time-dependent two-dimensional billiards have also been
much studied, and can exhibit Fermi acceleration; see [30–33].

At this point we make some remarks about the chaotic
properties of systems with Fermi acceleration such as the bouncer
model. In the Fermi acceleration regime, recurrence and ergodicity
in a single unbounded component of phase space are likely, but
not proven to our knowledge. The largest Lyapunov exponent
as calculated for typical points in this component are likely to
be positive for the discrete but zero in the continuous version
of the dynamics, as the chaos-inducing collisions are rare when
the particle has high velocity. Properties such as mixing are not
uniquely defined for systems with infinite invariant measure.
We will describe the large component of phase space below as
‘‘strongly chaotic’’, but it should be recalled that this has a more
limited meaning for systems such as the bouncer model.

We now define the bouncer model. A plate moves periodically
with vertical position y0(t) = ϵ coswt , and a particle with
position y(t)makes elastic collisions, returning to the plate due to a
constant gravitational force−g .We can scale the time to setw = 1
and the position to set g = 1, leaving only a single parameter
ϵ; here we mostly do not consider air resistance or an inelastic
restitution coefficients, although these have been considered in the
literature [34–36]. The natural dynamical variables are the phase
φn = tn(mod 2π) of the collision at time tn and the velocity
vn = ẏ(tn) immediately after this collision. The dynamics is given
implicitly by

ϵ cosφn+1 = ϵ cosφn + vn∆n −
∆2

n

2
(1)

vn+1 = −(vn − ∆n) − 2ϵ sinφn+1 (2)

where ∆n = tn+1 − tn = φn+1 − φn + 2πk with k ∈ {0, 1, 2, . . .}
is the time difference between collisions and takes its smallest
possible positive value when there is more than one positive
solution.

It is worth mentioning one of the few exact solutions of this
model, which also determines the main phase space structure. It
is φn = 0, vn = πm, δn = 2πm for some m ∈ {1, 2, 3, . . .}, giving
a family of fixed points of the collisionmap. Since it corresponds to
the top (or for ϵ < 0, the bottom) of the cycle, a linear perturbation
of the phase leads only to a quadratic perturbation of the height y
and may be neglected for a linear stability analysis. It is easy to
show that linear perturbations (δφ, δv) satisfy

δφn+1
δvn+1


=


1 2

−2ϵ 1 − 4ϵ

 
δφn
δvn


(3)

where the matrix has complex eigenvalues corresponding to an
elliptic fixed point in the region 0 < ϵ < 1, in particular only
when the particle collides at the top of the cycle and the forcing is
not too strong. For ϵ < 0 or ϵ > 1 the orbit is hyperbolic.

Now, let us consider numerical simulation of the bouncer
model. The dynamical equation is transcendental. The most
common approach considered in the literature to simulate this
system rapidly is to simplify it using the Holmes method which
uses a constant height for the plate, but time-varying impulse
provided to the particle; see [29]. Here we consider the exact
equations, using the following efficient numerical method, which
is based on the approach used by one of the authors in a different
billiard problem [37]. The free flight motion is exactly solvable
for a known time step. The time step is chosen using a rigorous
lower bound for the actual time step, thus the first collision is
never overstepped (modulo round off error).While in thisworkwe
consider only the original bouncer model, the numerical method
is discussed in the more general context of an additional frictional
force, which is considered elsewhere in the literature [34,35].

We know ÿ0(t) ≤ ϵ, thus the second derivative of the
displacement of the particle above the plate d(t) = y(t) − y0(t)
satisfies d̈(t) ≥ −1 − ϵ in the absence of friction, where the
1 corresponds to gravity. More generally we consider a frictional
force −mη(v) given by a monotonically increasing function η(v)
with η(0) = 0. During a free flight the velocity is decreasing, so
the acceleration of the particle is becoming less negative and we
have d̈(t) ≥ −1 − η(v(0)) − ϵ for t > 0 within the same free
flight. Now we can integrate this inequality twice, using the initial
conditions v(0) and y(0) and find in the general case

d(t) > d(0) + ḋ(0)t − [1 + η(v(0)) + ϵ]
t2

2
. (4)



C.P. Dettmann, E.D. Leonel / Physica D 241 (2012) 403–408 405
Fig. 1. The phase space of the bouncer model for the parameter value ϵ = 0.6.

The RHS is positive at t = 0, thus a rigorous lower bound for the
time step is given by the solution of the quadratic equation RHS =

0. Numerically, the form of the solution is chosen depending
on the sign of the linear term, to minimise subtraction error as
usual. The larger of the two solutions of the quadratic is chosen,
corresponding to the collision in the future. In the event that
roundoff error gives a displacement that is slightly negative, the
use of the larger solution also prevents a spurious collision with
the lower side of the plate.

Let us assume we are close to a collision, for which the actual
time step required is δt ≪ 1. The lower bound computed by
the algorithm is as shown above. An upper bound for d(t) is the
same expression, except that in the acceleration term, η(v(0))
is replaced by η(v(t)) > 0 and ϵ is replaced by −ϵ. Thus the
displacement d0(t) is determined to within a bounded constant
times t2, as is the time step in the generic case when the linear
term in the quadratic equation is not too small. Thus the algorithm
typically converges quadratically, similar to Newton’s method, for
example. In practice, the approach to the collision to a tolerance
close to machine precision takes around five steps, and is then
followed by the collision map transformation of the velocity.

The bouncer model exhibits a structure very similar to that of
the Chirikov standard map [38] with K ≈ 4ϵ; see [28,29]. This
is a 2D map that can be reduced to a torus, being periodic in
both directions. The bouncer is clearly periodic in φ, and it is also
‘‘nearly’’ periodic in v. Recall the family of periodic orbits at φ = 0
and v = πm; clearly both these and their stability is periodic in v
with period π . The map as a whole is not periodic, as can be seen
for free flights starting and ending at different y values, but this
becomes less significant at large v, and even at small v is strongly
noticeable; see Fig. 1.

The bouncer model exhibits a series of transitions as the
parameter is varied, analogous to those of the standard map.
The case ϵ = 0 is regular. For small ϵ the velocity is bounded
due to invariant curves. Near ϵ ≈ 0.24 (corresponding to
K = 0.971 . . .) invariant spanning curves at all but the lowest
velocities are disrupted, leading to unbounded velocity (Fermi
acceleration) of some orbits. For ϵ > 1 the fixed points studied
above become unstable (initially bifurcating into elliptic period
2 orbits) and for large ϵ the motion is almost entirely chaotic.
At some parameter values K > 2π , the standard map also has
‘‘accelerator modes’’, which are orbits in which velocity increases
linearly with discrete time; these can be stable and surrounded
by elliptical islands, so yielding anomalous diffusion of velocity
for the chaotic component [39]. The parameter ϵ = 0.6 of Fig. 1
shows clear elliptic islands around the fixed points, coexisting
with Fermi acceleration of the chaotic orbits; this ϵ is below the
lowest accelerator modes, so diffusion of velocity in discrete time
is expected to be normal to a good approximation.
3. The escape problem

Nowwe discuss the bouncer model as an open system allowing
escape, leading on to the transport problem in the next section.
In open dynamics, we choose a distribution (more precisely,
probability measure) of initial conditions, allow the dynamics to
evolve with escape, so that any trajectory reaching a subset of
phase space called the ‘hole(s)’ leaves the system and is no longer
considered. After some time (or number of collisions) we ask what
fraction of initial conditions are still in the system, the survival
probability P(t).

The initial measure can be uniform (which is natural where this
is an invariant measure, as for bounded Hamiltonian systems), or
a more general measure supported in a general subset of phase
space, or on the hole. If the initial measure is supported on the
hole, we talk about the gap or residence time distribution. We
naturally consider more than one hole, and ask for the reflection
probabilities (trajectory returns to the samehole) and transmission
probabilities (escape through a different hole); these are discussed
in the next section.

The bouncer model is time-dependent, leading to the question
of how to consider open time-dependent dynamical systems;
general theories of these systems do not appear in the literature
to our knowledge, although aspects of many specific physical
examples have been studied. In the time-dependent case, either
the initial probability measure or the survival probability function
needs to include information about the initial time as well as
phase space point. Here we have a periodic system, where the
phase can be considered an additional phase variable, and it is
natural to consider the initial conditions distributed uniformly
over some interval in φ as well as in v. In a quasiperiodically forced
system, it would be natural to extend the phase space to include a
finite number of additional phases. For a randomly forced system,
the probability measure would naturally incorporate that of the
forcing. However for a general deterministic but aperiodic forced
system, the best approach is likely to be considering the survival
probability as a function of both initial and final times.

Another issue here, which is common to all non-ergodic
systems, and in particular thosewithmixed phase space, is that the
results depend on the support of the measure of initial conditions.
So, if the initial conditions include an elliptic region not connected
with the hole, the survival probability will tend to a constant as
t → ∞, giving the probability of choosing such an initial condition.
Numerically, this washes out other time-dependence of P(t) and
also slows the simulation, as the elliptic trajectories need to be
simulated for the full duration of the time interval. Ref. [13] refers
to initial measures that ‘‘touch’’ the elliptic island, but this is likely
to be problematic due to the fractal boundary of these islands.Most
simulations in the literature therefore use initial conditions in a
(largely) strongly chaotic region of phase space, andwedo this also,
drawing 108 uniformly from 2 < v < 4 and 3.85 < φ < 4.15, and
the parameter ϵ = 0.6 as in Fig. 1; any other reasonably large set
in the chaotic region and any other smooth density would give the
same results, at least at long times.

The hole is chosen to be a subset of φ only, ie vertical strips
in the phase plot of Fig. 1. In general we could choose any subset
of the phase space. The choice of intervals in φ corresponds to
the plate being removed at certain parts of its periodic motion
(except for very low velocities, in which case multiple collisions
are possible), and in more general terms, a hole with few control
parameters typically accessing both regular and chaotic parts of
phase space, which is the most likely situation experimentally.
This choice of hole location also allows the non-escaping orbits to
access the Fermi acceleration. We avoid here the situation where
the hole overlaps the set of initial conditions; this belongs to the
next section on transport.
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Fig. 2. Survival probability for the escape problem, for holes of size h = 0.3 at different locations (compare with Fig. 1). Holes centred at φ = 0, 0.5, 1, 1.5 are located over
or near the large elliptic islands, while holes centred at φ = 2, 2.5 are almost entirely in the chaotic sea. The two plots on the left are for discrete time, showing primarily
exponential decay in the former case, and algebraic in the latter. Those on the right are for continuous time, showing stretched exponential decay; note the

√
(t) on the axis.

The algebraic decay has the same power as for discrete time.
The results for the escape are shown in Fig. 2, using a hole
of size h = 0.3 and centred at various locations both in and
away from the main elliptic islands. For a hole placed over part
of the elliptic islands, decay is initially slower, as it takes some
time for the dynamics to ‘‘find’’ regions close to the elliptic islands,
faster at intermediate times, as the hole covers sticky orbits which
would slow decay, and eventually a slow power law, as islands not
covered by the hole become significant. Where the hole is in the
chaotic sea, decay is generally slowed by the available large elliptic
islands. Note that a hole partially covering an island may in fact
destroy all orbits surrounding that island; here we see effective
destruction of islands using holes quite a lot smaller than the
islands concerned.

We now focus on the intermediate behaviour in the case where
the hole largely blocks orbits near the elliptic islands. When
measured in discrete time, this is exponential as expected for
strongly chaotic systems. When escape is measured in continuous
time (right plots), the rapid decay is instead close to a stretched
exponential, with

√
t in the exponent. This can be explained by the

Fermi acceleration, as follows: A typical chaotic orbit lasting for n
collisions has survival probability e−n/n0 where 1/n0 is the discrete
escape rate. This orbit diffuses in velocity, with a typical velocity
proportional to

√
n, and hence time t0 ≈ n

√
n on average. The

tail of the distribution of time as a function of n follows a typical
diffusion process, decaying as e−c1(t/t0)2 , thus the probability of
surviving for n collisions and taking a time t is proportional to
the product of these exponentials. For a given time t , this is
maximised when the exponent −n/n0 − c1t2/n3 is maximum;
differentiating this and setting it equal to zero we find the largest
contribution from n ≈ (3c1n0t2)1/4, with probability e−c2

√
t and

c2 determined from the other constants. The algebraic decays in
continuous time are, however, the same as in discrete time; this is
because it is dominated by orbits near the elliptic island, which do
not accelerate, and in fact have almost constant velocity.
4. Time-dependent transmission and reflection probabilities

Recent work [17] has discussed reflection and transmission
probabilities in an intermittent system, the stadium billiard, as a
function of time, and found a striking asymmetry, namely that the
reflection probability from one hole decayed algebraically, while
that from the other decayed exponentially, despite the ergodicity
of the closed system. The intermittency in the stadium arises from
a single family of parabolic ‘‘bouncing ball’’ orbits. The bouncer
model considered here is a significantly more complicated system.
While in the Fermi acceleration regime there is a large ergodic
component corresponding to the chaotic sea, intermittency arises
from the much more detailed and generic mechanism of a
hierarchy of elliptic (‘‘KAM’’) islands. One of the main aims of this
paper is to determine whether the same asymmetric effect can
occur in this much more general setting.

In the stadium of [17], the mechanism of asymmetric transport
is related to a splitting of the ergodic phase space due to the hole in
the intermittent region. We note the hole in the straight segment
of the stadium also allows escape of orbits with large angles, hence
far from the bouncing ball orbits, but this does not alter the effect.
The mechanism is that the hole ‘‘traps’’ the intermittent orbits,
so that while they may take some time to escape (due to the
intermittency), they can escape only through the same hole, and
not another hole placed far from the intermittent region.

Holes nearφ = 0will cover both elliptic islands and chaotic sea,
while holes near φ = π will cover mostly chaotic sea. Of course
any elliptic island completely covered by a hole cannot lead to slow
escape. Wemust also choose a measure of initial conditions. As we
are studying transport, these will be supported on one of the holes.
The measure is chosen to be uniform in the (φ, v) coordinates,
between v = 2 and v = 4, as in the escape case. Note that the
initial measure is supported on a strict subset of the hole. This
is because both dynamics and holes have infinite measure in this
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Fig. 3. The transmission and reflection probabilities Pij(t) for four different hole sizes h: 0.1 (top left), 0.4 (top right), 1 (bottom left) and 2.2 (bottom right), as a function of
continuous time t . Both holes are the same size. Hole 1 is centred at φ = 0 and hole 2 is centred at φ = π .
system, so some choice needs to bemade about the initialmeasure;
the results depend in principle on both the holes (position, size and
shape) and on the choice of initial measure. The dependence on the
initial measure here facilitates design of transport problems with
specified properties, and is a strength of this approach. Here our
choice is similar to in the escape section.

For the transport problem we consider Pij(t), the probability of
remaining until at least time t and eventually escaping through
hole j given that the particle enters through hole i; note the slight
difference in notation from [17]. Here i, j ∈ {1, 2} label the two
holes. If the particle always eventually escapes (as would follow
from Poincaré’s recurrence theorem if the phase space were of
finite invariant measure, and is probably still true here), then we
have−

j

Pij(0) = 1. (5)

For the numerical simulations shown in Fig. 3, 108 initial
conditions are chosen for each hole. The first hole is in the region
of the elliptic islands around φ = 0. The second hole is centred
at π ; this covers some of the smaller islands, and is far from the
large islands around φ = 0, so for practical purposes it is in the
strongly chaotic region. First we consider the effect of changing
the hole size; see Fig. 3. This figure shows very clearly the effect
we are seeking, namely a very strong P11(t) for hole sizes h = 0.4
and h = 1. For these parameter values (and many not shown), the
hole in the elliptic region effectively traps the long-lived orbits near
the smaller islands while reducing the lifetime of orbits near the
large island. In other words, orbits near these small islands cannot
reach other parts of phase spacewithout passing through this hole.
On the other hand, a hole that is too small (h = 0.1) does not
effectively trap these orbits, and one that is too large (h = 2.2)
allows all orbits to escape within a finite time.

Another feature we can see, particularly in the plot for hole size
1, is that the long lived orbits are well approximated by a stretched
exponential, aeb
√
t . This goes against conventional wisdom (see

the previous section) in which a power is expected in generic
mixed systems, however even in papers such as [13,5], curves
intermediate between power and exponential behaviour can be
found (but not much remarked upon). A possible explanation is
that in situations involving a single large island, the stretched
exponential law is visible, while for more generic cases with many
islands of comparable size, the effects combine to generate a more
uniform power. However, in contrast to the escape problem, we do
not at present have an explanation for why it should be a stretched
exponential, or whether the power in the exponential is exactly
1/2.

Fig. 4, compares transport properties of the hole of size h = 1
in discrete and continuous time, and also shows stretched
exponential fits for the reflection probability of hole 1 in the region
of the elliptic islands. Themain difference here are the transporting
orbits, which decay with many fewer collisions; these can reach
large velocities. The discrete time plots for the other values of h are
even more similar to those of continuous time given in Fig. 3, and
are not shown.

5. Conclusion

In contrast to the stadium billiard considered in [17], the
bouncer model exhibits a generic mixed phase space structure,
time-dependent dynamics and Fermi acceleration. The properties
of escape and transport inmixedphase space have been considered
previously, and remain a challenging problem for the future. Here
we note that generic mixed phase space allows the asymmetric
transport similar to that observed in the stadium, butwith different
functional forms, and in particular a clear stretched exponential
was observed.

The fact that the dynamics is time-dependent affected the
definition of the initial measure and survival probabilities, albeit
in a fairly straightforward way, that of increasing the phase space
dimension by one. Further approaches for more involved time-
dependence were noted in the section on escape.
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Fig. 4. The transmission and reflection probabilities Pij(t) for the hole size 1, compared for discrete time (left) and continuous time (right), and also showing fits to the
stretched exponential behaviour in both cases.
The Fermi acceleration provided the most interesting and also
challenging problems for the study of escape and transport. For
the escape problem, it resulted in a different functional form of
the survival probability between the discrete and continuous time
problems, exponential in the first case and stretched exponential
in the second; however the form of the stretched exponential
(involving

√
t) could be deduced from the properties of the velocity

diffusion process. More fundamentally, a hole of infinite measure
does not lend itself to a unique measure for the initial conditions;
this ambiguity and dependence on initial measure can be used to
advantage, however, in the flexible design of the problem. This
issue deserves further study, both from a numerical and a rigorous
point of view.

One ormore of these issues apply to verymany types of physical
systems, and we hope that this work will provide a starting point
for future studies, both theoretical and experimental, discussed in
the introduction. Many such systems are dissipative, and relevant
measures on chaotic regions of phase space are typically fractal.
Insight into escape and transport scenarios is also important for
the corresponding quantum problems.
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