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Abstract
The effects and consequences of dissipation in the scaling exponents describing
the behaviour of average properties over the chaotic dynamics for a family of
two-dimensional mappings are studied. The mapping is parametrized by an
exponent γ in one of the dynamical variables and by a parameter δ ∈ [0, 1],
which denotes the amount of the dissipation. The Lyapunov exponents are
obtained for different values of γ and δ in the range 0 < δ < 1. The behaviour
of the approaching orbits to the chaotic attractors is described analytically to
be of exponential type. The deviation around the average action for chaotic
orbits was described by a single set of scaling exponents obtained for different
γ leading the model to fall into the same universality class as that of the
dissipative bouncer model.

PACS numbers: 05.45.Ac, 05.45.Pq, 05.45.Tp

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of dynamical properties of two-dimensional nonlinear mappings is a topic that
draws attention in various areas of physics, ranging from general systems [1, 2], periodically
corrugate waveguides [3–5], channel flows [6, 7], billiards [8], Fermi acceleration [9, 10],
study of magnetic field lines in toroidal plasma devices with reversed shear (like tokamaks)
[11, 12], suppression and production of Fermi acceleration [13] and many others.

The mappings may have different control parameters controlling the dynamics and phase
regimes including a transition from integrability to non-integrability. In the conservative case,
certain ranges of control parameters produce a mixed phase space showing chaotic seas
surrounding periodic islands and invariant spanning curves [1]. The introduction of dissipation
generally made by a damping coefficient destroys the conservative structure, and elliptic fixed
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points may bifurcate into sinks leading to a permanent trapping of the dynamics to a steady
state. Chaotic seas may give rise to chaotic attractors. Invariant spanning curves are also
destroyed. Hence, it is possible to observe a variety of different behaviours when the damping
is varied. Examples of dissipative dynamical systems related to a variety of fields of physics
that are treated by the use of discrete mappings can be found in [14–25] and references
therein.

In this paper, we consider a family of dissipative two-dimensional nonlinear mappings
parametrized by an exponent γ in one of the dynamical variables. There is also a control
parameter ε controlling the nonlinearity of the mapping. For ε = 0 and considering the
conservative case, the mapping is integrable; therefore, we consider ε �= 0. We are seeking
to understand and describe the influences and consequences of the dissipation in average
observables obtained for chaotic orbits. The dissipation is introduced by the use of a control
parameter δ such that, for δ = 1, the conservative system is recovered; hence, we consider
the case of δ < 1. We have shown that given an initially large action, the convergence to the
chaotic attractor was proved analytically to be of exponential type. Moreover, some scaling
properties along the chaotic attractor were considered and scaling exponents describing the
average of the mean action are numerically obtained. The knowledge of such exponents
allows us to define and compare universality classes for two-dimensional mappings [26].
Indeed for the non-dissipative case and considering the angle as a diverging function in the
limit of vanishing action, the phase space is mixed containing periodic islands, chaotic seas
and invariant spanning curves. The first of these can be estimated via a connection with the
standard mapping [27], where it is supposed that the phase space experiences a transition
from local to globally chaotic dynamics (see [1] for specific discussions and [27] for recent
results). The behaviour for the average action of the chaotic sea is described by the same law
that describes the position of the first invariant spanning curve in the phase space and scales
with a function of γ . Such a scale produces a family of different exponents characterizing
the average action, which is described via a homogeneous function. Therefore, the different
exponents define different universality classes. The main result obtained for the dissipative
case and in contrast to what is observed for the corresponding non-dissipative case of the
mapping (see [26]) is that the dissipation leads the average action to be characterized by a
single set of critical exponents even when the parameter γ is varied. Therefore, dissipation
destroys the different universality classes observed in the non-dissipative case leading the
dynamics to fall into a single set of critical exponents. This paper then discusses the results for
the critical exponents in the dissipative dynamics. The procedure used in this paper to obtain
the critical exponents consists in investigating the behaviour of the average action in the chaotic
attractor and hence its deviation around the average value. In the absence of dissipation and
for the control parameters considered, the action presents an unlimited diffusion. However, the
introduction of dissipation causes a shrink in the phase space and localized attractors appear.
Such attractors have properties that depend on the control parameters. Our contribution to
this study is to describe some of these properties using the formalism of scaling. In fairness,
we show that the fine structure observed in the non-dissipative case with the occurrence of
a continuous set of critical exponents [26, 27] as a function of γ is entirely destroyed in the
dissipative case. The latter produces a single set of critical exponents.

The paper is organized as follows. In section 2, we present the model and discuss the
variables and control parameters used. Section 3 is devoted to the analytical approach for the
convergence of the orbits towards the chaotic attractor and the discussion of the Lyapunov
exponents. Section 4 addresses the scaling properties for the chaotic attractors. Finally, in
section 5, we present our concluding remarks.
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(a) (b)

Figure 1. Chaotic attractors generated for the mapping (1) for the control parameters, ε = 100,
δ = 0.999 in (a) γ = 3/5 and (b) γ = 2. We used a grid of 10 × 10 (= 100) different initial
conditions uniformly distributed in the window I0 ∈ [0.01, 1] and θ0 ∈ [0.1, 1]. Each initial
condition was evolved up to 5 × 103 iterations.

2. The model and the map

The dynamical system considered in this paper takes into account the introduction of
dissipation in a family of two-dimensional Hamiltonian mappings [1]. The mappings are
defined as

T :

{
In+1 = |δIn − (1 + δ)ε sin(2πθn)|
θn+1 = [

θn + Iγ

n+1

]
mod1,

(1)

where the parameter ε controls the nonlinearity, δ is the parameter controlling the amount of
dissipation and γ is a free parameter. The variable θ is indeed modulated 1. The determinant
of the Jacobian matrix of the mapping (1) is Det J = δsign [δIn − (1 + δ)ε sin(2πθn)], where
the function sign(u) = 1 if u > 0 and sign(u) = −1 if u < 0. For δ = 1, the conservative
case is recovered. Moreover, different mappings are obtained according to the values of γ .
For the case of δ �= 1 and γ = 1, and considering the transformations In+1 → Vn, 2πθ → φ

and n → n + 1, one can recover the dissipative bouncer model [28, 29]. Considering γ = −1,
δ = 1 and taking into account the following transformations I → V and 2πθ → φ, one
recovers the conservative Fermi–Ulam accelerator model [10]. For the case of δ = 1, γ = −1,
2πθ → X and I → γ , where γ in this transformation represents the angular coordinate
instead of the control parameter, one has the periodically corrugated waveguide [3]. On the
other hand, for the case of δ = 1 and γ = −1/2, one endeavours to obtain and describe the
dynamical properties of a particle in a wave packet [30].

In this paper, we consider the dynamics given by mapping (1). The more natural observable
to look at is the average action Ī, and hence, the deviation of average Ī for chaotic orbits for
different values of γ , which we consider in this paper as non-negative. Following [26], different
universality classes were obtained for the conservative case considering different values of γ .
As we will see, the dissipation destroys such universality classes leading the dynamics to be
characterized by a single set of scaling exponents instead of several sets as observed in the
non-dissipative case. The time evolution of different initial conditions is shown in figure 1
for the control parameters ε = 100, δ = 0.999 in (a) γ = 3/5 and (b) γ = 2. As one can
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Figure 2. Behaviour of I versus n using ε = 10, δ = 0.999, I0 = 60 000, θ0 = 0.01 and γ = 2.

note, the different values of γ do not produce substantial changes in the chaotic attractors.
We used a grid of 10 × 10 (= 100) different initial conditions uniformly distributed in the
window I0 ∈ [0.01, 1] and θ0 ∈ [0.1, 1]. Each initial condition was evolved up to 5 × 103

iterations.

3. Approaching orbits to chaotic attractors and Lyapunov exponents

Let us discuss in this section an analytical argument for approaching orbits to the chaotic
attractors. To do so, as an initial condition we consider a large value of I0. Given the system
is dissipative and therefore shrinks in area in the phase space, it is expected that a large initial
action I0 will lead the dynamics to low values of I as time goes on. We then want to describe
this decay of the action as a function of n. To do so, we iterate the second equation of the
mapping (1) and obtain

I1 = |δI0 − (1 + δ)ε sin(2πθ0)|,
I2 = |δ2I0 − (1 + δ)ε [δ sin(2πθ0) + sin(2πθ1)] |,
I3 = |δ3I0 − (1 + δ)ε[δ2 sin(2πθ0) + δ sin(2πθ1) + sin(2πθ2)]|.

(2)

A general expression can be written as

In = δnI0 − (1 + δ) ε

n∑
i=1

δn−i sin(2πθi−1). (3)

Given the periodicity of the sine function, the second term in the above equation after the
equality can be neglected as it contributes very little to the average, mainly producing small
oscillations around the average decay. This procedure also let us to disregard the behaviour of
θ given by the second equation of mapping (1). The first term on the right-hand side marks
clearly an exponential decay. Figure 2 shows the behaviour of I given by mapping (1) as a
function of n for the control parameters ε = 10, δ = 0.999, I0 = 60 000, θ0 = 0.01 and γ = 2.
One sees that an exponential decay of I with n is clearly observed. We show in figure 2 that
an exponential fit of the type I = A eBθ gives A = 600(5) × 102 and B = −0.001 0070(3).

The chaotic orbits were characterized using the Lyapunov exponents. The basic principle
to obtain the Lyapunov exponents consists in verifying if two neighbouring orbits diverge
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(a) (b) (c)

Figure 3. Plots of λ versus n for the control parameters ε = 100, δ = 0.999 and γ = 2: (a) positive
Lyapunov exponent, (b) negative Lyapunov exponent and (c) summation of (a) and (b).

exponentially from each other as time goes on. If the orbits remain close or approach each
other during the long time, their dynamics is said to be regular. This implies that the Lyapunov
exponent is negative, λ < 0 or null λ = 0. If the orbits diverge exponentially in time, the
dynamics has a positive Lyapunov exponent λ > 0. In conservative systems, the sum of
Lyapunov exponents is equal to zero because of the area preservation in the phase space.
When dissipation is introduced in the system, area contraction is in course and the sum of both
Lyapunov exponents is no longer zero. The Lyapunov exponents are defined as in [31] (see
also [32] for a recent review on the topic):

λ j = lim
n→∞

1

n
ln

∣∣	(n)
j

∣∣, j = 1, 2, (4)

where 	
(n)
j are the eigenvalues of the matrix M = 
n

i=1Ji(θ, I), where Ji is the Jacobian matrix
of the mapping evaluated along the orbit.

In figure 3, the behaviour of the Lyapunov exponents averaged along the chaotic attractor
for mapping (1) is shown. Figures 3(a) and (b) show the behaviour of the (positive/negative)
Lyapunov exponent as a function of n, while figure 3(c) shows their summation. The parameters
ε = 100, δ = 0.999 and γ = 2 and five different initial conditions as labelled in the figure were
used. We obtained a convergence for the positive Lyapunov exponent as λ̄1 = 14.5618(9) and
λ̄2 = −14.5628(9) for the negative. The error 0.0009 in both cases corresponds to a standard
deviation of the five samples. The summation of λ̄1 + λ̄2 is of the order of −10−3, as shown
in figure 3(c), which is of the same magnitude as that of (1 − δ).

We now discuss the behaviour of the Lyapunov exponents as a function of the parameters
ε, δ and γ . In figures 4(a) and (d), the behaviour of λ̄ versus (1−δ) for fixed ε = 100 and γ = 2
while δ ∈ [0.99, 0.999 99] is shown. For this case, the negative Lyapunov exponent shown in
figure 4(a) grows logarithmically, while the positive Lyapunov exponent in figure 4(d)
decreases logarithmically with (1−δ). A fitting for the negative Lyapunov exponent furnishes
λ̄2 = −11.114(2) + 0.4989(2) ln(1 − δ), while for the positive Lyapunov exponent it gives
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(a) (d)

(b) (e)

(c) (f )

Figure 4. Plots of the negative (first column) and positive (second column) Lyapunov exponent as
function of: (a, d) (1 − δ); (b, e) ε and; (c, f) γ .

us λ̄1 = 11.102(2) − 0.5002(3) ln(1 − δ). A logarithmic behaviour was also observed in
figures 4(b) and (e) for the case of λ̄ versus ε for a fixed δ = 0.999, γ = 2 and a large range
of ε ∈ [

10, 103
]
. For this case, we see that the negative Lyapunov exponent in figure 4(b)

decreases logarithmically with ε. Again a fitting gives us λ̄2 = −5.3496(9)+2.0000(1) ln(ε).
Figure 4(e) shows that the positive Lyapunov exponent grows logarithmically with ε as
λ̄1 = 5.3492(5) + 1.99 993(8) ln(ε). The variation of the control parameter γ produces a
change in the Lyapunov exponent, as shown in figures 4(c) and ( f ) for λ̄ versus γ . The control
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parameters considered in both figures were ε = 100 and δ = 0.999, while γ ∈ [3/5, 2]. We
observe in figure 4(c) that the negative Lyapunov exponent decreases linearly with the control
parameter γ . A fitting furnishes λ̄2 = 1.86(5) − 8.25(4)γ , while figure 4( f ) shows a linear
growth for the positive Lyapunov exponent given as λ̄1 = −1.86(5) + 8.25(4)γ .

4. Scaling properties

In the conservative case, the presence of the invariant spanning curves limit the size of the
chaotic sea at low action. It was shown previously [3, 10, 26, 27, 30] that scaling properties
are observed in the chaotic sea and that they depend on the position of the first invariant
spanning curve [27]. The exponents describing the laws of the average quantities in the
chaotic sea depend on the exponent γ . Therefore, as γ changes, the exponents of the laws
vary too, following the law that describes the position of the first invariant spanning curve. For
the dissipative case, the invariant spanning curves are destroyed and chaotic attractors may
appear, for specific ranges of control parameters, replacing the chaotic seas. Scaling properties
for the dissipative case were also considered [28, 29] and universality classes were obtained.
Therefore, in this section, we discuss the deviation of the average action for chaotic attractors
denoted as ω. Our main goal is to compare the exponents describing the laws of the average
quantities in the chaotic attractors with those obtained for both the conservative [26, 27] and
the dissipative cases [28, 29]. The observable ω is defined as

ω(n, ε, δ) = 1

B

B∑
i=1

√
I2
i (n, ε, δ) − Ii

2
(n, ε, δ), (5)

where B corresponds to an ensemble of different initial conditions θi ∈ (0, 1) randomly chosen
for a fixed I0 = 10−3ε and Īi is given by

Ii(n, ε, δ) = 1

n

n∑
j=1

I j,i. (6)

Figure 5 shows the behaviour of ω versus n for the exponent γ = 2 and different control
parameters (as labelled in the figure). Similar results were observed for other values of γ too.

Let us now discuss the behaviour observed in figure 5. We see that the curves start
growing for small n and after reaching a crossover number nx, they bend towards a regime of
convergence. Based on the behaviour shown in figure 5, we suppose the following.

(i) For n � nx, ω grows according to a power law of the type

ω ∝ (nε2)β, (7)

where β is an exponent.
(ii) For large n, say n � nx, the behaviour of ω is

ωsat ∝ (1 − δ)α1εα2 , (8)

where α1 and α2 are the critical exponents;
(iii) The crossover nx, which characterizes the transition of the growing regime for the

saturation, is

nx ∝ (1 − δ)z1εz2 , (9)

where z1 and z2 are the dynamical exponents.

7
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(a) (b)

Figure 5. Plots of different curves of ω as a function of n for the control parameter γ = 2 and
different values of (a) δ and (b) ε. We considered an ensemble of B = 5000 different initial
conditions.

The critical exponents α1, α2, z1 and z2 can be obtained from numerical simulations. First,
fitting the initial regime of growth over many different simulations, we obtain that β ∼= 0.5.
The other exponents are obtained from specific plots. In figures 6(a) and (b), plots of nx versus
(1 − δ) and ωsat versus (1 − δ), respectively, for the case of ε = 100 are shown. On the other
hand, in figures 6(c) and (d), plots of nx versus ε and ωsat versus ε for δ = 0.999 are shown.
All the results shown in figure 6 were obtained for a fixed γ = 2 and using long simulations
of 5 × 108 iterations. The ensemble average used was B = 5 × 103. Power-law fittings for
the curves plotted in figure 6 furnish (a) z1 = −0.990(5) and (b) α1 = −0.502(1), and
(c) z2 = 2.006(7) and (d) α2 = 0.999 99(4).

Indeed the scaling hypotheses shown in equations (7)–(9) allow us to formally describe
the behaviour of ω as a homogeneous and generalized function. If a similar procedure is made
as discussed in [29] and after rescaling the axis of figure 5 as ω → ω/[(1 − δ)α1εα2 ] and the
horizontal axis as n → nε2/[(1 − δ)z1εz2 ], we show in figure 7 that all the curves shown in
figure 5 overlap each other onto a single and hence universal plot. Therefore, this confirms
that the behaviour of ω is scaling invariant with respect to the control parameters as well as n.

The curves of ω were obtained for a fixed γ = 2. The procedure works well for other
values of γ in the range γ ∈ [3/5, 2]. In tables 1 and 2, the scaling exponents found via
numerical simulations for different values of γ are given. The scaling exponents given in table
1 were obtained for a fixed control parameter ε = 100 and different values of δ. Keeping fixed
the control parameter δ = 0.999 and considering different values of ε, the critical exponents
are given in table 2.

Let us now discuss the consequences of the dissipation in the critical exponents. As was
discussed recently for the conservative case [26], the critical exponents obtained there are
different for different values of γ . The variation of γ leads to several universality classes
characterized by different critical exponents. Later on we explained (see [27]) in terms of a

8
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(a) (b)

(c) (d)

Figure 6. Plots of nx and ωsat for a fixed γ = 2 as a function of (a, b) (1 − δ) for ε = 100 and
(c, d) ε for δ = 0.999.

Table 1. Scaling exponents obtained for ε = 100 and δ ∈ [0.99, 0.999 99] for the mapping (1).

γ β α1 z1

3/5 0.496(6) −0.508(1) −1.028(4)
3/4 0.496(4) −0.5005(3) −0.989(4)
4/5 0.496(5) −0.5010(2) −0.989(4)
1 0.494(5) −0.496(2) −0.988(6)
2 0.496(5) −0.502(1) −0.990(5)

robust approach that the critical exponents are strongly dependent on the position of the first
invariant spanning curve for the conservative case. In this paper, the invariant spanning curves
are destroyed and therefore are not observed because of the dissipative term. Moreover, after
a close look at both tables 1 and 2 we see no significant differences of the scaling exponents
for several variations of the exponent γ . Moreover, we conclude that the fine hierarchy of the
different universality classes observed for the non-dissipative case of equation (1) is destroyed

9
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Figure 7. Overlap of different curves of ω onto a single plot. The parameters used are the same as
those shown in figure 5.

Table 2. Scaling exponents obtained for the range ε ∈ [
10, 103

]
and δ = 0.999 for the

mapping (1).

γ β α2 z2

3/5 0.489(5) 0.9975(7) 1.987(9)
3/4 0.492(5) 0.9970(9) 1.977(4)
4/5 0.493(3) 0.9996(1) 1.995(3)
1 0.494(4) 1.0008(4) 1.997(5)
2 0.491(5) 0.999 99(4) 2.006(7)

by the dissipative term leading the dynamics to be characterized by a single set of critical
exponents. The exponents obtained are independent of γ , and the dissipative mapping (1)
leads the dynamics to fall into the same universality class as that of the dissipative bouncer
model [28, 29].

5. Conclusion

We have studied the effects of dissipation in a family of two-dimensional mappings
parametrized by an exponent γ in one of the dynamical variables. We have shown that
the dissipation creates chaotic attractors and proved that the convergence to them coming from
high action is of exponential type. The Lyapunov exponents were obtained as a function of
the control parameters and fitted as logarithmically dependent on the parameter (1 − δ) and
ε and linearly as a function of γ . Finally, a single set of scaling exponents was obtained for
different values of the control parameter γ leading us to conclude that map (1) falls into the
same universality class of the dissipative bouncer model [28, 29]. Therefore, we conclude that
the fine structure observed in the phase space for the conservative case is destroyed in the
presence of dissipation. The average action and hence its deviation around the average value
lead us to observe a single set of critical exponents.

10
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