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The influence of weak dissipation and its consequences in a two-dimensional mapping are studied.
The mapping is parametrized by an exponent γ in one of the dynamical variables and by a
parameter δ which denotes the amount of the dissipation. It is shown that for different values
of γ the structure of the phase space of the nondissipative model is replaced by a large number
of attractors. The approach to the attracting fixed point is characterized both analytically and
numerically. The attracting fixed point exhibits a very complicated basin of attraction.
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1. Introduction

Studies of nonlinear two-dimensional mappings
have been under consideration by many during
the last decades [Lichtenberg & Lieberman, 1992;
Zaslavsky, 1998]. Applications of this formalism
can be used in the study of periodically corru-
gate waveguide [Leonel, 2007; Rabelo & Leonel,
2008; Virovlyansky & Zaslavsky, 2000; Smirnov
et al., 2001], channel flows [Luna-Acosta et al., 2002;
Zaslavsky, 2002], billiards [Leonel & Bunimovich,
2010; Berry, 1981], Fermi acceleration [Karlis et al.,
2006; Leonel et al., 2004] and also for the study
of magnetic field lines in toroidal plasma devices
with reversed shear (like tokamaks) [Howard et al.,
1986; Saif et al., 1998; Saif, 2000; Luna-Acosta
et al., 1996] and in suppression and production of
Fermi acceleration [Ladeira & Leonel, 2010], among
others.

A dynamical system generally has one or more
control parameters. They can control the nonlin-
earity, and different characterizations can be made

like measuring the Lyapunov exponents, finding the
fixed points and obtaining a transition from inte-
grability to nonintegrability. For the conservative
case, i.e. when dissipative forces are absent, regu-
lar motions around the stable periodic orbits can
be observed as well as Kolmogorov–Arnold–Moser
(KAM) islands and invariant tori. The periodic
orbits can be classified in two differents forms, such
as [Lichtenberg & Lieberman, 1992; Feudel et al.,
1996; Feudel & Grebogi, 1997]: (i) primary islands
are fixed points of period-1 and (ii) periodic orbits of
period > 1. In the second case, the periodic orbits
make up the largest regions of the regular behav-
ior in the phase space and are surrounded by small
islands of stability. These small islands have higher
period and are secondary islands. Generally, the sec-
ondary orbits fill small regions of the phase space
when compared with primary islands. Regions with
chaotic motions can be observed too. Both motions
can be illustrated in the phase space of these map-
pings exhibiting a large chaotic sea that eventually
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surrounds KAM islands and is limited by a set
of invariant tori [Lichtenberg & Lieberman, 1992].
The size of the chaotic sea is strongly influenced by
the control parameters given that they control the
nonlinearity.

The introduction of dissipation in a dynam-
ical system destroys all structures of the phase
space observed for a conservative model. Thus, it
is possible to observe different asymptotic behav-
iors when the damping is varied. For instance,
the effects of transient [Liberman & Tsang, 1985],
attractive fixed points [Luck & Mehta, 1993], peri-
odic orbits [Tavares & Leonel, 2008] and chaotic
attractors [Tsang & Lieberman, 1984] can be con-
sidered. If a small dissipation is introduced in a
conservative system, the periodic orbits turn into a
finite number of periodic attractors. The number of
attractors depends on the damping level and of the
systems under consideration. The periodic orbits
are converted into an attractor and such attractor
exists even for large damping. Generally, in dynam-
ical systems the number of periodic attractors are
associated with the primary islands by 1/damp-
ing [Feudel & Grebogi, 1997]. This shows that if
the damping tends to zero the number of peri-
odic attractors tends to infinity. The association
with the conservative system provides that primary
islands correspond to a set of periodic orbits. For
the secondary islands in some systems the number
of attractors is less than the primary one [Feudel
et al., 1996; Feudel & Grebogi, 1997].

The description of dissipative dynamical sys-
tems is important for the study of the motion of
a particle within fluid with gas [Leonel & McClin-
tock, 2006; Leonel & Tavares, 2007], irreversibility
in complex systems charge and energy transfer in
quantum molecular systems [May & Kuhn, 2000],
and even for describing dissipation in quantum
mechanics [Castro Neto & Caldeira, 1991], for the
investigation of basin size evolution between dissi-
pative and conservative limits [Rech et al., 2005],
fractal dimension of the set of singularities for a
scattering function [Seoane et al., 2007], for the
model of the finite bath [Rosa & Beims, 2008] and
in the mechanical systems that consist of two rotors
that possess a large number (3000+) of coexisting
periodic attractors [Feudel et al., 1998] and many
others.

In this paper, we consider the introduction of
dissipation in a family of two-dimensional mapping

[de Oliveira et al., 2010]. The dissipation is consid-
ered such that for δ = 0 the system is conservative.
Thus, the dissipation destroys the mixed structure
of the phase space and creates a large number of
attractors. Each one of the attractors has a compli-
cated basin of attraction. The convergence to the
attractor is shown to be exponential and was char-
acterized both analytically and numerically.

The paper is organized as follows. In Sec. 2 we
present the model and discuss the variables and
control parameters used. Section 3 is devoted to
present our results. Finally, in Sec. 4, we draw our
concluding remarks.

2. Definition of the Problem and
the Mapping

In this paper, we consider a family of dissipative
two-dimensional mapping given by

T :




xn+1 =
[
xn +

a

yγ
n+1

]
mod 1

yn+1 = |(1 − δ)yn − b sin(2πxn)|,
(1)

where a, b, δ and γ are the control parameters.
Some of the motivations for considering this form
of the mapping comes from [de Oliveira et al.,
2010] where a careful study of the conservative
case was carried out and critical exponents from a
phase transition from integrability to nonintegra-
bility were obtained. Since the present form was
not yet discussed in the literature, it is important
to understand the laws which describe the conver-
gence to the attractors and some of their character-
istics. The determinant of the Jacobian matrix is
Det J = (1 − δ)sign[(1 − δ)yn − b sin(2πxn)] where
sign(u) = 1 if u > 0 and sign(u) = −1 if u < 0.
One can see that if δ = 0 the conservative system
is recovered.

The coordinates of the period-1 fixed points of
the mapping (1) can be obtained by matching the
following conditions: yn+1 = yn = y and xn+1 =
xn = x + m, where m = 1, 2, 3, . . . . After some
algebra, we obtain the fixed points as

(x, y) =

(
1
2π

arcsin

[
−δ

b

(
2
m

)1/γ
]
,

(
2
m

)1/γ
)

,

(2)
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(a) (b)

Fig. 1. Attracting fixed point observed for the mapping (1) for the control parameters, a = 2, b = 10−2, δ = 10−3, and (a)
γ = 1/2, (b) γ = 3/4.

which are unstable and

(x, y) =

(
1
2π

{
π − arcsin

[
−δ

b

(
2
m

)1/γ
]}

,

(
2
m

)1/γ
)

, (3)

that can be stable for specific set of control
parameters.

The attracting fixed point with period larger
than 1 was obtained numerically. Figure 1 shows
some of the attractors and their period obtained for
the control parameters a = 2, b = 10−2, δ = 10−3 in
(a) γ = 1/2 and (b) γ = 3/4. Each initial condition
was evolved up to 107 iterations as an attempt to
avoid the effects of the transient. The range of ini-
tial conditions were x ∈ (0, 1] and y = [5 × 10−3,
0.22] for Fig. 1(a) while y = [5 × 10−4, 0.33] for
Fig. 1(b). The highest period accounted was (a) 33
and (b) 68.

3. Numerical Results

We begin discussing the convergence to the attrac-
tors. To investigate the convergence to an attract-
ing fixed point we define a set of initial conditions
along the basin of attraction of an attractor and
allow them to evolve in time. In order to check
whether the initial condition has reached the fixed
point, we define a convergence criterion to check the
asymptotic approximation of the attractive fixed

point. It consists of obtaining the distance of the
orbit from a fixed point. We define a distance r
and evolve the initial conditions. If an orbit is suf-
ficiently close to an attracting fixed point, consid-
ering a distance lower than r, then the number of
iterations spent to reach such a condition is kept
and a new initial condition is started. The average
number of iterations for an ensemble of M initial
conditions is obtained as

n =
1
M

M∑
i=1

ni. (4)

A plot of r × n shows how the average behavior of
the ensemble of initial conditions evolve to the fixed
point. The distance from the fixed point is obtained
as r =

√
(xn − xf )2 + (yn − yf )2 where (xf , yf )

are the coordinates of the fixed point. Figure 2(a)
illustrates a typical behavior of r × n. Each curve
corresponds to a different value of δ. The aver-
age was performed using M = 500 different ini-
tial conditions for the control parameters a = 2,
b = 10−2, γ = 1/2. The curves illustrated in
such a figure are fitted by rn = r0 exp(An). For
δ = 10−4, we obtained r0 = 5.1(6) × 10−2 and A =
−1.0001(1)×10−5. Using δ = 2×10−5 it was found
r0 = 0.5(2)×10−2 and A = −5.002(2)×10−5. These
results allow us to conclude that the trajectories
exponentially approach a fixed point. Figure 2(b)
illustrates the behavior of n × δ. This behavior can
be described as

n ∝ δµ. (5)
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(a) (b)

Fig. 2. (a) Plot of r × n, (b) plot of n × δ.

A power law fit shown in Fig. 2(b) gives µ =
−0.9980(1) ∼= −1. One can see that in the limit
of δ → 0, Eq. (5) yields n → ∞. Of course, n → ∞
implies that the convergence to the attracting fixed
point has not occurred, as it was expected to be
observed in the nondissipative case. Specific discus-
sion for the problem of the one-dimensional Fermi
accelerator model under the presence of frictional
force can be found in [Leonel & McClintock, 2006;
Leonel & Tavares, 2007]. The power-law scaling of
the number of attractors is fairly common, but not
general, since the scaling can be also exponential
sometimes.

Let us now give an analytical argument for the
exponential approach to the fixed points. We con-
sider a large value of y as the initial condition. We
iterate the second equation of the mapping (1) and
obtain

y1 = |(1 − δ)y0 − b sin(2πx0)|,
y2 = |(1 − δ)2y0 − b[(1 − δ) sin(2πx0)

+ sin(2πx1)]|,
y3 = |(1 − δ)3y0 − b[(1 − δ)2 sin(2πx0)

+ (1 − δ)sin(2πx1) + sin(2πx2)]|.

(6)

A general expression can be written as

yn = (1 − δ)ny0 − b
n∑

i=1

(1 − δ)n−i sin(2πxi−1).

(7)

Let us now consider specific limits for the parameter
δ and initial condition y0. Given that we are consid-
ering small dissipation, we assume that 0 < δ � 1.

Additionally we use a large y0 when compared to
the length of b, typically y0 = 103b. Moreover given
the periodicity of the sine function, the second term
in Eq. (7) after the equality can be neglected as it
contributes just a small oscillation around the aver-
age decay. Expanding the first term in powers of n,
we obtain

yn � y0


1 +

k∑
j=1

1
j!

[ln(1 − δ)]jnj


. (8)

The term ln(1 − δ) inside of the brackets can be
written as

ln(1 − δ) � −δ − δ2

2
− δ3

3
− δ4

4
+ · · · . (9)

Considering that δ is sufficiently small, we keep only
the first term in Eq. (9). Substituting this result in
Eq. (8), we recover the definition of the exponential,
as follows

yn = y0 e−δn. (10)

Figure 3(a) shows the behavior of y as a func-
tion of n. One can see that an exponential decay
of y with n is observed. The control parameters
used in the construction of Fig. 3 were a = 2,
b = 10−2, δ = 5 × 10−4 and γ = 1/2. We show in
Fig. 3(a) that using the initial condition x0 = 0.01
and y0 = 10, an exponential fit of the type y = AeBx

gives A = 10.1996(6) and B = −0.00052496(2).
Comparing with Eq. (10) we conclude that B cor-
responds roughly to the value of −δ. The region
expanded in Fig. 3(a) shows the passage of an orbit
near a basin of attraction of the attracting fixed
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(a) (b)

(c)

Fig. 3. (a) The behavior of y as a function of the number of iteration n. The initial condition used was x0 = 0.01 and y0 = 10.
(b) Period-1 attracting fixed point (sink) and (c) y×x. The control parameters used in both figures were a = 2, b = 10−2, δ =
5 × 10−4 and γ = 1/2.

point-sink (yellow star) as shown in Fig. 3(c). Fig-
ure 3(b) shows that evolving y as a function of n up
to 107 iterations, the behavior of y decays exponen-
tially for a period-1 attracting fixed point of coor-
dinates x = 0.5013 and y = 0.16. Figure 3(c) shows
the basin of attraction in red for a period-1 attract-
ing fixed point (yellow star) and the evolution of
an initial condition close to it. We see that the evo-
lution of the initial condition around the basin of
attraction starts at the initial condition in the arrow
labeled Start and using circles connected by a dot-
ted black line as a guide to the eye and ends in the
arrow labeled End.

As the orbit approaches the fixed point, the
general decay is characterized by an exponen-
tial function, however there are small oscillations
around the average value. When the orbit passes
near a large region influenced by a period-1 fixed
point, it suffers a large perturbation which can
cause a swap of rotation along the decay. To illus-
trate such behavior, Fig. 3(c) shows the basin of
attraction for a period-1 attracting fixed point for

m = 2, x = 0.508 and y = 1. The width on the y-
coordinate for the large region of the basin of attrac-
tion is represented as ∆y in Fig. 3(c). When the
orbit passes near this region, it suffers a switch of
rotation, as can be seen in the inset of Fig. 3(a).

For small dissipation and specific ranges of con-
trol parameters, the number of attractors in the
phase space can be quite large. As an attempt to
estimate the number of attractors present in the
model, we have performed several simulations con-
sidering different sets of initial conditions. Figure 4
shows a histogram of frequency for the period of
the orbit against its appearance in the phase space.
The control parameters used were a = 2, b = 10−2

and δ = 10−3. It is important to emphasize that in
Fig. 4(a) the control parameter used was γ = 1/2
while in Fig. 4(b) was γ = 3/4. The number of
initial conditions considered were 104, 9 × 104 and
2.5 × 105 uniformly chosen along the phase space.
Each initial condition evolved 107 iterations, thus
avoiding transient effects. For 104 initial conditions,
it can be seen that low periodic attractors with
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(a) (b)

Fig. 4. Number of periodic orbits and their period using a = 2, b = 10−2, δ = 10−3, (a) γ = 1/2 and (b) γ = 3/4.

period lower than 10 dominate over high periods,
while, high periods are rarely found. It is impor-
tant to note that the number of attractors obtained
depends on the number of initial conditions used.

For 104 initial conditions, the greater periodic orbit
found for γ = 1/2 was 160, while for γ = 3/4 was
168. For 9 × 104 initial conditions, the largest peri-
odic orbit observed for γ = 1/2 was 504 while for

(a) (b)

(c) (d)

Fig. 5. (a) and (c) The basin of attraction for the periodic attractors shown in Fig. 1 for δ = 10−3. (b) and (d) The phase
space for the nondissipative case respectively. The parameters used were a = 2, b = 10−2, and (a) and (b) γ = 1/2; (c) and
(d) γ = 3/4.
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γ = 3/4 was 168. Finally for 2.5× 105 initial condi-
tions, the highest periodic orbit found for γ = 1/2
was 504 while for γ = 3/4 was 180. Applications of
this procedure has also been discussed for a mechan-
ical rotor model and Fermi–Ulam model [Feudel
et al., 1996; Tavares & Leonel, 2008].

Let us now comment on the basin of attrac-
tion for the attractors and the phase space for the
nondissipative system. Figure 5 shows the basins
of attraction for the fixed points shown in Fig. 1
with the corresponding phase space constructed
for the nondissipative system. It can be seen that
the largest basin of attraction shown in red in
Figs. 5(a)–5(c) corresponds to the main orbit of
period 1 (P1) of the phase space for the nondissi-
pative system shown respectively in the Figs. 5(b)–
5(d). The fixed points of the nondissipative system
can be obtained by matching the following condi-
tions: yn+1 = yn = y and xn+1 = xn = x + m,
where m = 1, 2, 3, . . . . The (red) circle bullets in
Figs. 5(b)–5(d) indicate the location of some of the
elliptic fixed points, each one of them enumerated
by m. A complete discussion of the fixed points for
the nondissipative system as well as their classifi-
cation was done in [de Oliveira et al., 2010]. We
can use the numeration of m to compare the basin
of attraction with the phase space of the nondissi-
pative system. In general, all basins of attraction
of P1 orbits are relatively large when compared to
those of the other period. To observe the basins of
attraction for high periodic orbits, a large number
of initial conditions is required. Figure 1 was con-
structed using 2.5 × 105 different initial conditions.

4. Conclusion

In this manuscript we have studied the effects
of weak dissipation in a two-dimensional mapping
parametrized by a control parameter γ as a dynami-
cal variable. We showed that the dissipation creates
attractors in the system. Specifically we observed
the existence of a large number of coexisting peri-
odic attractors and classified their periods. We
proved analytically and confirmed numerically for
this system that an orbit approaching an attracting
fixed point is characterized by an exponential func-
tion. The number of periodic attractors was esti-
mated and the structure of the basins of attrac-
tion was shown to be quite complicated. The phase
space for the nondissipative system was used to
compare the corresponding basin of attraction for
the attracting fixed points in the dissipative case.

We verified that all basins of attraction of period-1
(P1) orbits are relatively large when compared to
those of other periods. Moreover, they correspond
to large period-1 KAM islands on the conserva-
tive case. The present procedure can be applicable
to many other different systems where a transition
from conservative to weak dissipation is observed.
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