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Abstract In this introductory paper we take partial stock

of the current state of field on calculus research, exempli-

fying both the promise of research advances as well as the

limitations. We identify four trends in the calculus research

literature, starting with identifying misconceptions to

investigations of the processes by which students learn

particular concepts, evolving into classroom studies, and,

more recently research on teacher knowledge, beliefs, and

practices. These trends are related to a model for the cycle

of research and development aimed at improving learning

and teaching. We then make use of these four trends and

the model for the cycle of research and development to

highlight the contributions of the papers in this issue. We

conclude with some reflections on the gaps in literature and

what new areas of calculus research are needed.

Keywords Calculus � Trends in calculus research � Cycle

of research and development � Future directions

Calculus plays an important role in secondary and tertiary

education. Future teachers, engineers, doctors, economists,

scientists, and, of course, mathematicians undertake the

effort of learning and understanding calculus concepts and

techniques. Calculus also carries status; taking a course in

calculus is often thought to be a pinnacle of intellectual

achievement by students and parents. Calculus is used as

everything from a ‘weeding out’ course to fundamental

preparation to take on applied problems in partner disci-

plines, preparing students to bring an understanding of

rates, concavity, functional relationships, among other

topics to bring to bear on multi-disciplinary problems.

Large numbers of students enroll in calculus courses at the

secondary and tertiary levels each year. For instance, in

Europe and East Asia calculus is compulsory for many

students at the secondary level, whereas in the United

States, students take calculus either at the secondary or at

the tertiary level (or both). Similarly, in most countries in

Latin America, calculus is taken by millions of students at

universities.

Although differences exist among countries, we argue

that the secondary vs. tertiary differences are not great for a

first course in differential and integral calculus, especially

when taking a developmental lens. However, the secondary

vs. tertiary differences might be greater when viewed

through a pedagogical or cultural lens, including institu-

tional constraints and affordances. This is an interesting

and open area of research.

Given that a good number of students around the world

enroll in calculus, whether at the secondary or tertiary

level, research on the learning, teaching, and understanding

of calculus has the potential to have broad impact. Thus,

we argue it is fundamentally important that the body of

research on calculus learning, teaching, and understanding

coherently contribute to the practice of educating the mil-

lions of students who enroll in calculus courses each year.

Twenty years ago, Schoenfeld (1994) argued that well-

executed research in collegiate mathematics education

provides, ‘‘theoretically based, disciplined ways of

enhancing our understanding of mathematical thinking,

learning, and teaching’’ (p. 4). Has research in undergrad-

uate mathematics education (and in calculus in particular)
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produced results that enhance our understanding of math-

ematical thinking, learning, and teaching, as Schoenfeld

argued it should? While the past several decades of

research in calculus has contributed to better understanding

of mathematical thinking, learning, and teaching in areas

such as limit, derivative, and integral, too much research

remains isolated and uncoordinated.

These gaps were the departure point of this issue of

ZDM. With papers from over a dozen leaders in the field,

this issue of ZDM takes partial stock of the current state of

the field and exemplifies both the promise of research

advances in calculus learning and teaching as well as the

current limitations. In broad terms, the collection of papers

shed light on the following questions: To what extent has

the field moved forward in providing a more cohesive

portrait of calculus teaching and learning? To what extent

have research advances impacted the actual teaching of the

millions of students that take calculus? In Sect. 2, we

discuss the broad trajectories in which the field has

advanced as well as a model for interpreting the cycle of

research and development aimed at improving teaching and

learning. In Sect. 3 we then use this background to discuss

each of the papers in this volume.

1 Background

Research on calculus learning and teaching generally has

followed a pattern of (1) identifying and studying student

difficulties and cognitive obstacles followed by (2) inves-

tigations of the processes by which students learn particular

concepts, (3) evolving into classroom studies (or close

approximations thereof), including the effects of curricular

and pedagogical innovations on student learning, and, more

recently (4) research on teacher (including graduate student

instructor, lecturers, etc.) knowledge, beliefs, and practices.

We can see this pattern, in varying degrees, in the research

in different subdomains of calculus: limit, derivative, and

integral.

For example, in the subdomain of research on the

learning and teaching of derivative, early research focused

on students’ difficulties and under-developed conceptual

understandings of derivative (Orton 1983; Ferrini-Mundy

and Graham 1991). An even earlier paper by Morgan and

Warnock (1978) reported on an investigation of student

difficulties as a result of calculating derivatives on a cal-

culator. Similarly, early research on the learning and

teaching of limit detailed a range of student difficulties and

misconceptions (e.g., Davis and Vinner 1986; Furinghetti

and Paola 1988; Tall and Vinner 1981).

In the 1980s and 1990s, advances in the theoretical

foundations of student thinking and learning had a strong

influence on research in mathematics education. The

advent of constructivism in particular impacted under-

graduate mathematics education research and led to the

publication of research attempting to follow students

through stages of understanding particular ideas. For

example, the work of Dubinsky and colleagues adapted

ideas from Piaget to develop what they refer to as the

Action, Process, Object, Schema (APOS) theory (see Ar-

non et al. 2014 for a comprehensive review of APOS

theory). At about the same time, Sfard (1991a, b) was

developing related ideas of process and object and Gray

and Tall (1994) were publishing on the idea of procepts. In

physics education research, diSessa (1988) was fleshing out

his theory of p-prims. While there are important differences

between these different framings, the point we make is that

these advances ushered in an era of research that was

focused not on student misconceptions, but rather on

articulating theories of how students learn and the role of

manipulatives and other representations in learning (e.g.,

Cobb 1992; Thompson 1992). Zandieh (2000) illustrates

the impact of these theoretical developments by combining

a process-object layer with a context (representation) layer

to form a framework for analyzing student understanding

of the derivative. The research literature continues to

investigate the role of representations in student learning.

Hähkiöniemi (2004), for instance, reported on how students

learn the concept of derivative through interactions with

multiple representations.

In addition to building theories about how students

learn, more recent research has also targeted the focus; for

example, studying student understanding of the chain rule

(Barbosa 2009; Kabael, 2010), the Riemann Sum (Sealey

2014), or the fundamental theorem of calculus (Salinas

2013; Thompson and Silverman 2008); bringing in ideas

from psychology; for example, research on gesture (Yoon

et al. 2011a, b), employing research related to psychon-

analysis (Baldino and Cabral 1994), and crossing disci-

plinary boundaries to physics (Marrongelle 2004;

Christensen and Thompson 2012). These are all important

advances in our understanding of how students’ learn

specific calculus topics, but the studies leave the field with

a hit-or-miss map of the terrain in calculus learning,

teaching, and understanding.

Many of the studies in calculus learning, teaching, and

understanding are relatively small in scale, implementing

clinical interview methodologies with a small number

students. Others, such as Borba and Villarreal (2005) and

Soares (2012) have reported on studies that include whole

classrooms (40–50 students) that investigate, for example,

the role of visualization provided by different software in

modeling or in problem solving activity.

The predominant methodology, whether applied to a

few or many students, is the clinical interview. This begs

the question, after several decades of research on student
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thinking about derivative, what do we know about the

development of the derivative concept and how has the

research shaped teaching practice? It is noteworthy that the

research in calculus learning and teaching has not capi-

talized on advances in design research (Kelly et al. 2008) to

further link theories of learning with theories of instruc-

tional design, as researchers in differential equations (Ar-

tigue 1994; Rasmussen 2007) and abstract algebra (Larsen

et al. 2013) have. One might wonder why design research

in calculus has not been more prevalent. One conjecture is

that, at least in the US, the calculus reform movement in

the 1990s was dominated by curriculum development

projects led by thoughtful mathematicians who tended not

to have extensive educational research expertise. The

subsequent backlash from the calculus reform movement

may have then had an effect on the type of calculus

research that was carried out. We argue that the time is now

right, given the depth of what we know about student

learning of particular ideas in calculus, for the field to

engage in comprehensive design research in which math-

ematicians and mathematics education researchers work

together to address theoretical and pragmatic concerns

related to the teaching and learning of calculus.

In its manuscript Mathematical Proficiency for All Stu-

dents: Toward a Strategic Research and Development

Program in Mathematics Education, the RAND Study

Panel (2003) advised about the field of mathematics edu-

cation writ large, ‘‘The absence of cumulative, well-

developed knowledge about the practice of teaching

mathematics and the limited links between research and

practice have been major impediments to creating a system

of school mathematics that works’’ (p. 5). The same

observation can be made of calculus learning and teaching,

if we value the interplay between the production of

knowledge and the improvement of practice. The Cycle of

Knowledge Production and Improvement of Practice

(henceforth referred to simply as the Cycle of Knowledge)

is one attempt to articulate a cycle of research and devel-

opment aimed at improving learning and teaching (see

Fig. 1). No single project, on its own, would be expected to

answer a significant problem of practice or theory; rather,

projects would build upon one another to build knowledge

and inform practice.

If we again turn to the literature on thinking, learning

and teaching of the derivative, we can ask how the deriv-

ative literature maps onto the Cycle of Knowledge. Many

studies fall into the categories of ‘‘studies of basic prob-

lems of teaching and learning,’’ including early research on

student misconceptions (e.g., Orton 1983) and studies of

students conceptions of derivative (e.g., Aspinwall

et al.1997; Nemirovsky and Rubin 1992). Research

informed by theories such as APOS (e.g., Asiala et al.

1997) moves to the ‘‘Development and testing of new

theories of knowledge about teaching and learning’’ part of

the cycle. As we continue around the cycle, we find that

fewer published studies examine ‘‘Interventions in Prac-

tice’’ and even fewer report on teachers’ mathematical

knowledge for teaching derivative, an aspect of ‘‘Inter-

ventions in practice,’’ a hugely under-investigated area in

calculus learning and teaching research.

2 Papers in this issue

Including this introductory paper, there are 16 papers in

this issue of ZDM dedicated to Arnold Kirsch. Kirsch’s

contributions to calculus research is acknowledged by

including a reprint of one of his papers, which is charac-

teristic for his interest in a deep and sound understanding of

concepts beyond formalism. This reprint, which appears as

Fig. 1 Cycle of knowledge

production and improvement of

practice
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the penultimate paper in this issue, is followed by a com-

mentary paper by Werner Blum who remarks on the high

importance of the work by Arnold Kirsch in the German

and even wider European context. Preceding the reprint by

Kirsch, there is a commentary paper by Barry Sloane, who

provides an insightful perspective from the viewpoint of

someone who is intimately familiar with a variety of

research methods and who is keenly aware of the priorities

and concerns of mathematics education research and its

funding.

Thus, not counting this introductory paper, Kirsch’s

paper, and the two commentary papers, there are 12 other

papers in this issue. These 12 papers, as well as the other 4

papers, reflect the growth of the research on calculus

learning and teaching and exemplify both the progress

made as well as the gaps still present. One noteworthy

point is that none of the 12 papers is aptly characterized as

primarily identifying and studying student difficulties and

cognitive obstacles, which is more typical of educational

research areas in their early stages. To be certain, all 12

papers discuss the challenges students and/or instructors

typically face, but documenting such difficulties is not the

main focus of the analysis. A more appropriate theme for

all 12 papers is that of exploring the prospects and possi-

bilities for more coherent and conceptual learning and

teaching. More specifically, each of the 12 papers addres-

ses one of the three research themes that typically follow

reports that document student difficulties: investigating the

processes by which students learn particular concepts;

examining the effects of curricular and pedagogical inno-

vations on student learning; and, Studying instructor

knowledge, beliefs, and practices. In terms of the Cycle of

Knowledge in Fig. 1, these three research themes represent

movement clockwise starting at ‘‘studies of basic problems

of teaching and learning’’. In the paragraphs that follow,

we summarize the contributions of each of the 12 papers,

starting with those that fit the research theme of ‘‘Investi-

gating the processes by which students learn particular

concepts’’, followed by the papers that primarily ‘‘examine

the effects of curricular and pedagogical innovations on

student learning’’, and conclude with the papers that

‘‘Study instructor knowledge, beliefs, and practices’’.

The theme of investigating the processes by which stu-

dents learn particular concepts is embodied by only two of

the 12 papers. In the paper by Swidan and Yerushalmy

(2014, this issue), the authors make use of Radford’s

(2003) perspective on semiotics to detail the objectification

processes involved in making sense of the concept of an

indefinite integral when studied graphically in a dynamic

technological environment. They analyze how 11 pairs of

secondary school students think with and through cultural

artifacts, which are taken to be essential sources of learning

and shape thinking. Without significant intervention by a

teacher or the researchers, but with the use of innovative

digital tools, the pairs of students worked through a series

of tasks and the corresponding analysis sheds light on the

mathematical elements employed by the students and the

paths that students followed as they explored dynamically

linked graphs.

The paper by Kouropatov and Dreyfus (2014, this issue)

takes a similar methodological approach of working with

pairs of secondary school students outside of their regular

classroom. They examine the work of four pairs students as

they progress through a ten-lesson unit aimed at building

the concept of definite integral. Making use of the theo-

retical perspective of abstraction in context (Hershkowitz

et al. 2001), the authors detail how students can leverage

the ideas of approximation and accumulation to develop a

proceptual understanding of the integral in readiness for

learning the fundamental theorem of calculus. In contrast

to the paper by Swidan and Yerushalmy (2014, this issue),

this research did not make use of digital technologies, in

part because most secondary schools do not have access to

specifically designed technologies and hence the authors

wanted to mirror as much as possible typical school

context.

The paper by Törner et al. (2014, this issue) represents a

transition to studies that examine the effects of curricular

and pedagogical innovations on student learning. In total,

there are eight papers that fit this theme, four of which are

empirical reports and four of which are more theoretically

oriented reports. The Törner et al. paper reports on the

intended secondary school calculus curriculum in several

European countries. Through a careful literature review

and small expert-based survey, these researchers found

that, to a large extent, research advances (such as those in

the previous two papers) that utilize digital technologies

and/or specially designed tasks to actively engage students

to develop conceptual learning of the more formal math-

ematics has not found its way into the majority of European

secondary school calculus classrooms. A long-standing

emphasis on procedures and techniques in conjunction with

national exams with similar emphases is posited to con-

tribute to the minimal extent to which research advances

are finding their way into classrooms. An important con-

tribution of the paper is in its careful comparison of sec-

ondary school calculus curriculum in several European

countries, one of the first such comparisons.

While widespread adoption of innovative approaches to

teaching and learning calculus has yet to be realized in

several European countries (likely similar results exist

around the world), some progress is being made with more

local efforts. For example, the paper by Keene et al. (2014,

this issue) report on an iterative, classroom-based design

research study (Cobb et al. 2006) in a specialized calculus

class for undergraduates who will become elementary
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school teachers. Their research program, which includes

the development of a new curriculum, addresses a new

department level requirement for prospective elementary

school teachers to be conversant with the fundamental

ideas in calculus. The study draws on the instructional

design theory of Realistic Mathematics Education

(Gravemeijer 1994) and the paper details the evolution of

prospective elementary school teachers’ intuitions and

conceptions of the limit of a sequence. This work has

potential to spread to other post secondary institutions in

the United States that wish to increase the mathematical

competencies required of prospective elementary school

teachers, in part because it address the unique needs of

future elementary school teachers, which are arguable

different than that of students pursuing a degree in a sci-

ence, technology, engineering, or mathematics.

Continuing the trend of exploring the prospects and

possibilities for undergraduate students, but this time for

students in the biological sciences, Soares and Borba

(2014, this issue) report on a multi-level design research

study (Lesh and Kelly 2000) that takes full advantage of

digital technologies. Taking an epistemological perspective

based on the notion of humans-with-media (Borba and

Villarreal 2005), the authors focus on the role of the soft-

ware during the evolution of one of the activities that

developed the relation between secant lines and the

instantaneous rate of change. Similar to the Keene et al.

work, this research program has considerable potential for

wider spread adoption for many of the same reasons. The

needs of biology students are arguably different than those

of mathematics majors.

As the field moves from studies that are conducted in

settings outside of regular class time to design research

studies that make use of regular classroom contexts, it is

appropriate to carry out more quantitatively oriented

studies that compare the effect of interventions in which

the researchers have little to minimal involvement in the

actual teaching. Such is the case with the paper by Code

et al. (2014, this issue). Their work examines the efficacy

of using research-based, high-engagement teaching meth-

ods to help undergraduate economics students master the

conceptual and procedural aspects of calculus in a rela-

tively standard differential calculus course taught in a large

lecture format. The authors conducted a ‘‘switching repli-

cation’’ study, which makes for a strong quasi-experi-

mental design (Shadish et al. 2001) as each student acts as

their own control. Results include improved student per-

formance—on conceptual items in particular—with a

switching replication in that each section outperformed the

other on the topic for which it received the intervention.

We see this report as paradigmatic of a study that can be

captured by more than one location of the Cycle of

Knowledge. The original motivation is situated with

studies of basic problems of teaching and learning, fol-

lowed by the use, development, and documentation of

interventions in practice.

Three other papers in this issue also address the effects

of curricular and pedagogical innovations on student

learning. In contrast to the previous empirical studies, these

papers report on the theoretical and mathematical founda-

tions for different approaches on how calculus ideas can (or

should) be developed. In terms of the Cycle of Knowledge

these four papers begin to address research focused on the

‘‘Development and testing of new theories and knowledge

about teaching and learning’’ (see Fig. 1). For example,

Weigand (2014, this issue) eschews the widespread

embrace of starting with the limit to develop key ideas in

calculus. He instead articulates a comprehensive discrete

step-by-step approach by working with sequences and

difference sequences, functions defined on Z, and discrete

domains of Q to illustrate how one can develop the concept

of rate of change. In this approach, digital technologies are

used as a tool for the representation and visualization of

sequences and functions as well as a tool to create recur-

sively defined sequences, enabling the user to switch

between symbolic, numerical, and graphical

representations.

Rather than making use of a discrete approach, Moreno-

Armella (2014, this issue) embraces the use of infinitesi-

mals, such as conceiving of a smooth curve as a polygon

whose sides have infinitesimal length. He argues that such

an approach is especially valuable for teaching because it

has a clear intuitive meaning for students. At the heart of

Moreno-Armella’s approach to calculus is the need for a

clear distinction between analysis on the one hand, and the

intuitive ideas of change and accumulation on the other.

Moreno-Armella argues that the logical organization of

analysis based on definitions of limit, real number, conti-

nuity, and so on, is not necessarily first from the cognitive

viewpoint. Instead, through the use of dynamic digital

technologies that shape and are shaped by the user, the

Moreno-Armella tenders several examples of the possibil-

ities for an approach to calculus that blends the intuitive

ideas with the digital-dynamic embodiment of these ideas.

This approach certainly has commonality with the stance

Realistic Mathematics Education inspired approach taken

by Keene et al. (2014, this issue).

For their part, Job and Schneider (2014, this issue) cir-

cumvent the dichotomy between formal and intuitive

aspects of limits, which is an implicit or explicit concern of

many of the papers in this issue. Using Chevallard’s

anthropological theory of the didactic (Chevallard 1999),

they put forth an epistemological model where calculus is

considered as a pragmatic praxeology that evolved into a

deductive praxeology, the difference being in the type of

tasks and the nature of the justifications. This allows them
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to distinguish between calculus, with its pragmatic praxe-

ology, and analysis with its deductive praxeology. This

distinction is similar to the one insisted on by Moreno-

Armella. Developing their theoretical framing of the cal-

culus to analysis transition further, they demonstrate how

empirical positivism can function as an epistemological

obstacle in both calculus and analysis. At the heart of the

problem is that secondary schools and universities tend to

blur the distinction between the two praxeologies, which

reinforces the empirical positivist attitude as an epistemo-

logical obstacle to learning both calculus and analysis.

Implications for both research and teaching are offered.

The final three papers in this issue represent more recent

efforts in calculus research to study instructor knowledge,

beliefs, and practices. For example, Eichler and Erens

(2014, this issue) investigate the belief systems of 29 upper

secondary school teachers, where belief systems refer to

the intersection of cognitive and motivational aspects that

influence the selection of content and goals for calculus

teaching (Hannula 2012). The authors also compare

teachers’ belief systems to four education trends in the

teaching of calculus, which provide a set of objectives from

which calculus teachers potentially select their individual

teaching goals. As the authors point out, research on cal-

culus teachers’ belief systems is scarce, and hence this

report makes a useful contribution to an emerging area of

calculus research.

The focus of the paper by Ellis et al. (2014, this issue)

shifts from secondary school teacher belief systems (and

the potential connection to instructional practices) to uni-

versity level instructor practices and the relationship

between these practices and student persistence in the

calculus sequence. Based on regression analyses of data

from a large national survey in the United States, these

authors found that student persistence in calculus (a proxy

for continuation in a STEM major) was related to different

student reported frequencies of a number of pedagogical

activities. Making use of Tinto’s (2004) framework on

persistence, the authors discuss a number of implications of

this work for retaining students in a STEM major. In the

United States and elsewhere around the world, there is

great need to better understand the factors that contribute to

student decisions to stay in or to leave a STEM major, and

this paper makes a useful contribution in this direction.

Finally, the paper by White and Mesa (2014, this issue)

examines a different aspect of instructor practice, namely the

potential cognitive demand of nearly 5,000 Calculus I tasks

that instructors assigned to students at a 2-year college in the

United States identified as having a more successful calculus

program. Certainly the tasks that students are assigned are

essential learning opportunities, and hence understanding

the nature of these tasks and how assigned tasks may vary

across instructors is an important aspect of instructional

decision-making. One of their findings is that nearly half of

tasks in the data corpus were ‘‘complex procedures’’ or ‘‘rich

tasks’’. This is especially interesting in light of the result

from the paper by Törner et al. (2014, this issue), who found

that European secondary school students were primarily

being exposed to procedures and techniques. Another

interesting finding by White and Mesa is the fact that there

was considerable variation in the nature of the tasks assigned

across the five instructors at the institution studied, despite

the fact that they all used the same textbook. The authors

discuss a number of implications of this finding for tertiary

institutions. Finally, the framework they developed for

charactering tasks is an important contribution in and of

itself. It was shown to be reliable in coding tasks and

extended relevant prior work and hence will likely be a

valuable tool for other researchers who wish to examine the

opportunities to learn that different tasks afford students.

3 Conclusion

One salient characteristic of this issue of ZDM is that it

reports on research on early topics of calculus, and this

focus corroborates the findings of Britton and Henderson

(2013), who reviewed all the proceedings of the Delta

conferences. They point out that there a shortage of papers

in the Delta Conference proceedings that go beyond early

topics of calculus, in areas such as multivariable calculus

and differential equations. A look at PME proceedings will

confirm this finding.

As the papers in this volume attest to, the research in

calculus is continuing to advance our foundational

knowledge of the learning and teaching process. While we

know much about how students learn particular ideas in

calculus and the potential for digital technologies and high

engagement pedagogies, there still exists the issue of how

researchers can coordinate various advances that are

grounded in and informed by different theoretical per-

spectives. Consider the two papers in this volume on the

student learning of the indefinite and definite integral

(Kouropatov and Dreyfus 2014, this issue; Swidan and

Yerushalmy 2014, this issue). On its own, each paper

makes progress on revealing the processes by which stu-

dents can learn the indefinite and definite integral, but each

paper views the process of learning in fundamentally dif-

ferent ways. How then, should the research field coordinate

such advances? To be sure, the research field is currently

working, both theoretically and pragmatically, on ways to

coordinate and network different theoretical perspectives

and respective findings (e.g., Artigue and Mariotti 2014;

Bikner-Ahsbahs and Prediger 2014; Hershkowitz et al.

2014; Prediger et al. 2008; Rasmussen et al. 2012), but

considerably more progress is needed.
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In light of the challenges that the research community

has in coordinating different research advances, it is per-

haps not surprising that these advances have not had a

widespread impact in the actual teaching of and learning of

calculus (e.g., Toerner et al. this issue). The relationship

between the progress researchers need to make to coordi-

nate and network different advances and the uptake of such

advances by the broader practitioner and policymaking

communities is an issue that sorely needs addressing.

Moreover, taking up research advances in any widespread

manner requires an understanding of learners, teachers,

classrooms, departments, and institutions as complex sys-

tems. While some local improvements and innovations are

occurring in individual classrooms, broader impact will

need to based on theoretical advances and empirical studies

that advance what we know about how institutions in all

their complexity change. That is, research that takes up the

institutional and cultural context and how these aspects

constrain and enable sustained uptake of advances in cal-

culus learning and teaching is sorely needed. Indeed, we

argue that this represents a new research theme, one yet to

be realized to any large extent.

Lastly, the papers in this issue reveal another tension in

the research on calculus—what exactly do we want students

in calculus to learn? The tension here is multifaceted and

includes differences between the secondary and tertiary

level as well as differences between the needs of students

studying mathematics and those majoring in economics,

biology, engineering, business, etc. In a deeply theoretical

way with considerable practical implications, Job and

Schneider (2014, this issue) reveal this tension as it often

plays out between secondary school calculus and university

calculus. The distinction between pragmatic and deductive

praxeologies is widespread and likely many involved in the

teaching of calculus have yet to appreciate the depth of the

gulf that separates the two praxeologies. At the heart of the

issue is how researchers, curriculum developers, practitio-

ners, and policy makers think about the relationship

between calculus, with its more intuitive foundation of how

fast, how much, and infinitesimal thinking on the one hand,

and analysis, with its formal treatment of limits and conti-

nuity, on the other. Moreover, how the various constituents

think about this issue should depend on the questions for

whom and when? To what extent do students in the bio-

logical sciences (or engineering or physics for that matter)

benefit from learning about the formal role of limits? When

do mathematics majors benefit most from the formal

treatment of limits? What might be the role of modeling in

calculus for the learning of calculus itself and in preparation

for subsequent study of differential equations, fluid

dynamics, electromagnetism, and so on?

Progress on mathematics courses after differential and

integral calculus is underway. For, example, focusing on

the transition from Calculus to Analysis, Alves (2012)

investigates the use of Geogebra to help students visualize

the relation of epsilon and N in understanding convergence

of series and Bergé (2008) examines the opportunities for

learning about the set of real numbers in four undergrad-

uate correlative courses in Calculus and Analysis. Trigu-

eros and Martı́nez-Planell (2010) examine student learning

of two variable functions in multivariable calculus. The

research of Dullius, Araujo, and Veit (2011), Javaroni

(2007), Keene (2007), and Soares (2012) aim to improve

the teaching learning process of differential equations and

explore the potential of computers to promote favorable

conditions for meaningful learning. These recent research

efforts are only but a few of the international contributions

that are providing much needed insights into the learning

and teaching of mathematical concepts that build on and

extend the research on early calculus. An area of even

greater need, however, is that of the relationship between

calculus and the client disciplines of engineering, physics,

biology, and chemistry. We end this paper with a call for

research that closely examines the ways in which calculus

ideas are leveraged in the client disciplines, how these

ideas are conceptualized and represented in the client dis-

ciplines, and what these insights might mean for calculus

instruction.
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